4,392 research outputs found

    Analysis of information systems for hydropower operations

    Get PDF
    The operations of hydropower systems were analyzed with emphasis on water resource management, to determine how aerospace derived information system technologies can increase energy output. Better utilization of water resources was sought through improved reservoir inflow forecasting based on use of hydrometeorologic information systems with new or improved sensors, satellite data relay systems, and use of advanced scheduling techniques for water release. Specific mechanisms for increased energy output were determined, principally the use of more timely and accurate short term (0-7 days) inflow information to reduce spillage caused by unanticipated dynamic high inflow events. The hydrometeorologic models used in predicting inflows were examined to determine the sensitivity of inflow prediction accuracy to the many variables employed in the models, and the results used to establish information system requirements. Sensor and data handling system capabilities were reviewed and compared to the requirements, and an improved information system concept outlined

    Giant Shapiro Resonances in a Flux Driven Josephson Junction Necklace

    Full text link
    We present a detailed study of the dynamic response of a ring of NN equally spaced Josephson junctions to a time-periodic external flux, including screening current effects. The dynamics are described by the resistively shunted Josephson junction model, appropriate for proximity effect junctions, and we include Faraday's law for the flux. We find that the time-averaged IVI-V characteristics show novel {\em subharmonic giant Shapiro voltage resonances}, which strongly depend on having phase slips or not, on NN, on the inductance and on the external drive frequency. We include an estimate of the possible experimental parameters needed to observe these quantized voltage spikes.Comment: 8 pages RevTeX, 3 figures available upon reques

    Approach to wild-type gastrointestinal stromal tumors

    Get PDF
    Gastrointestinal stromal tumors (GISTs) arise from the intestinal pacemaker cells of Cajal. Wild-type gastrointestinal stromal tumors (WT-GIST) are a unique and uncommon subtype of GISTs that lack activating mutations in the tyrosine kinase c-KIT or platelet derived growth factor receptor alpha (PDGFRA) receptors. The lack of these growth-stimulating mutations renders tyrosine kinase receptor inhibitors, such as imatinib mesylate, relatively ineffective against these tumors. WT-GIST arises most commonly due to underlying alternate proliferative signals associated with germ-line, genetic mutations. WT-GIST frequently arises in patients with BRAF mutations, Carney’s Triad or neurofibromatosis type-1 (NF-1). All patients with WT-GIST require a careful examination for germ-line mutations and very close observation for recurrent tumors. Surgery remains a mainstay therapy for these patients. This review aims to discuss the most recent data available on the diagnosis and treatment of WT-GIST

    Fermi Edge Singularities in the Mesoscopic Regime: I. Anderson Orthogonality Catastrophe

    Full text link
    For generic mesoscopic systems like quantum dots or nanoparticles, we study the Anderson orthogonality catastrophe (AOC) and Fermi edge singularities in photoabsorption spectra in a series of two papers. In the present paper we focus on AOC for a finite number of particles in discrete energy levels where, in contrast to the bulk situation, AOC is not complete. Moreover, fluctuations characteristic for mesoscopic systems lead to a broad distribution of AOC ground state overlaps. The fluctuations originate dominantly in the levels around the Fermi energy, and we derive an analytic expression for the probability distribution of AOC overlaps in the limit of strong perturbations. We address the formation of a bound state and its importance for symmetries between the overlap distributions for attractive and repulsive potentials. Our results are based on a random matrix model for the chaotic conduction electrons that are subject to a rank one perturbation corresponding, e.g., to the localized core hole generated in the photoabsorption process.Comment: 10 pages, 8 figures, submitted to Phys. Rev.

    Screening current effects in Josephson junction arrays

    Get PDF
    The purpose of this work is to compare the dynamics of arrays of Josephson junctions in presence of magnetic field in two different frameworks: the so called XY frustrated model with no self inductance and an approach that takes into account the screening currents (considering self inductances only). We show that while for a range of parameters the simpler model is sufficiently accurate, in a region of the parameter space solutions arise that are not contained in the XY model equations.Comment: Figures available from the author

    UV properties of early-type galaxies in the Virgo cluster

    Get PDF
    We study the UV properties of a volume limited sample of early-type galaxies in the Virgo cluster combining new GALEX far- (1530 A) and near-ultraviolet (2310 A) data with spectro-photometric data available at other wavelengths. The sample includes 264 ellipticals, lenticulars and dwarfs spanning a large range in luminosity (M(B)<-15). While the NUV to optical or near-IR color magnitude relations (CMR) are similar to those observed at optical wavelengths, with a monotonic reddening of the color index with increasing luminosity, the (FUV-V) and (FUV-H) CMRs show a discontinuity between massive and dwarf objects. An even more pronounced dichotomy is observed in the (FUV-NUV) CMR. For ellipticals the (FUV-NUV) color becomes bluer with increasing luminosity and with increasing reddening of the optical or near-IR color indices. For the dwarfs the opposite trend is observed. These observational evidences are consistent with the idea that the UV emission is dominated by hot, evolved stars in giant systems, while in dwarf ellipticals residual star formation activity is more common.Comment: 5 pages, 2 figures, 1 table. Accepted for publication in Astrophysical Journal Letter

    The magnetic field structure in CTA 102 from high-resolution mm-VLBI observations during the flaring state in 2016-2017

    Full text link
    CONTEXT: Investigating the magnetic field structure in the innermost regions of relativistic jets is fundamental to understanding the crucial physical processes giving rise to jet formation, as well as to their extraordinary radiation output up to γ-ray energies. AIMS: We study the magnetic field structure of the quasar CTA 102 with 3 and 7 mm VLBI polarimetric observations, reaching an unprecedented resolution (∼50 μas). We also investigate the variability and physical processes occurring in the source during the observing period, which coincides with a very active state of the source over the entire electromagnetic spectrum. METHODS: We perform the Faraday rotation analysis using 3 and 7 mm data and we compare the obtained rotation measure (RM) map with the polarization evolution in 7 mm VLBA images. We study the kinematics and variability at 7 mm and infer the physical parameters associated with variability. From the analysis of γ-ray and X-ray data, we compute a minimum Doppler factor value required to explain the observed high-energy emission. RESULTS: Faraday rotation analysis shows a gradient in RM with a maximum value of ∼6 × 104⁴ rad m⁻² and intrinsic electric vector position angles (EVPAs) oriented around the centroid of the core, suggesting the presence of large-scale helical magnetic fields. Such a magnetic field structure is also visible in 7 mm images when a new superluminal component is crossing the core region. The 7 mm EVPA orientation is different when the component is exiting the core or crossing a stationary feature at ∼0.1 mas. The interaction between the superluminal component and a recollimation shock at ∼0.1 mas could have triggered the multi-wavelength flares. The variability Doppler factor associated with such an interaction is large enough to explain the high-energy emission and the remarkable optical flare occurred very close in time.Accepted manuscrip

    Nonequilibrium mesoscopic transport: a genealogy

    Full text link
    Models of nonequilibrium quantum transport underpin all modern electronic devices, from the largest scales to the smallest. Past simplifications such as coarse graining and bulk self-averaging served well to understand electronic materials. Such particular notions become inapplicable at mesoscopic dimensions, edging towards the truly quantum regime. Nevertheless a unifying thread continues to run through transport physics, animating the design of small-scale electronic technology: microscopic conservation and nonequilibrium dissipation. These fundamentals are inherent in quantum transport and gain even greater and more explicit experimental meaning in the passage to atomic-sized devices. We review their genesis, their theoretical context, and their governing role in the electronic response of meso- and nanoscopic systems.Comment: 21p

    Near-Infrared Molecular Hydrogen Emission from the Central Regions of Galaxies: Regulated Physical Conditions in the Interstellar Medium

    Full text link
    The central regions of many interacting and early-type spiral galaxies are actively forming stars. This process affects the physical and chemical properties of the local interstellar medium as well as the evolution of the galaxies. We observed near-infrared H2 emission lines: v=1-0 S(1), 3-2 S(3), 1-0 S(0), and 2-1 S(1) from the central ~1 kpc regions of the archetypical starburst galaxies, M82 and NGC 253, and the less dramatic but still vigorously star-forming galaxies, NGC 6946 and IC 342. Like the far-infrared continuum luminosity, the near-infrared H2 emission luminosity can directly trace the amount of star formation activity because the H2 emission lines arise from the interaction between hot and young stars and nearby neutral clouds. The observed H2 line ratios show that both thermal and non-thermal excitation are responsible for the emission lines, but that the great majority of the near-infrared H2 line emission in these galaxies arises from energy states excited by ultraviolet fluorescence. The derived physical conditions, e.g., far-ultraviolet radiation field and gas density, from [C II] and [O I] lines and far-infrared continuum observations when used as inputs to photodissociation models, also explain the luminosity of the observed H2 v=1-0 S(1) line. The ratio of the H2 v=1-0 S(1) line to far-IR continuum luminosity is remarkably constant over a broad range of galaxy luminosities; L_H2/L_FIR = about 10^{-5}, in normal late-type galaxies (including the Galactic center), in nearby starburst galaxies, and in luminous IR galaxies (LIRGs: L_FIR > 10^{11} L_sun). Examining this constant ratio in the context of photodissociation region models, we conclude that it implies that the strength of the incident UV field on typical molecular clouds follows the gas density at the cloud surface.Comment: Accepted for ApJ, 24 pages, 17 figures, for complete PDF file, see http://kao.re.kr/~soojong/mypaper/2004_pak_egh2.pd

    On the helium content of Galactic globular clusters via the R parameter

    Full text link
    We estimate the empirical R parameter in 26 Galactic Globular Clusters covering a wide metallicity range, imaged by WFPC2 on board the HST. The improved spatial resolution permits a large fraction of the evolved stars to be measured and permits accurate assessment of radial populaton gradients and completeness corrections. In order to evaluate both the He abundance and the He to metal enrichment ratio, we construct a large set of evolutionary models by adopting similar metallicities and different He contents. We find an absolute He abundance which is lower than that estimated from spectroscopic measurements in HII regions and from primordial nucleosynthesis models. This discrepancy could be removed by adopting a C12O16 nuclear cross section about a factor of two smaller than the canonical value, although also different assumptions for mixing processes can introduce systematical effects. The trend in the R parameter toward solar metallicity is consistent with an upper limit to the He to metal enrichment ratio of the order of 2.5.Comment: accepted for pubblication on Ap
    corecore