Models of nonequilibrium quantum transport underpin all modern electronic
devices, from the largest scales to the smallest. Past simplifications such as
coarse graining and bulk self-averaging served well to understand electronic
materials. Such particular notions become inapplicable at mesoscopic
dimensions, edging towards the truly quantum regime. Nevertheless a unifying
thread continues to run through transport physics, animating the design of
small-scale electronic technology: microscopic conservation and nonequilibrium
dissipation. These fundamentals are inherent in quantum transport and gain even
greater and more explicit experimental meaning in the passage to atomic-sized
devices. We review their genesis, their theoretical context, and their
governing role in the electronic response of meso- and nanoscopic systems.Comment: 21p