30,972 research outputs found
Doxorubicin Selectively Inhibits Brain versus Atrial Natriuretic Peptide Gene Expression in Cultured Neonatal Rat Myocytes
Doxorubicin is an antineoplastic agent with significant cardiotoxicity. We examined the effects of this agent on the expression of the natriuretic peptide (NP) genes in cultured neonatal rat atrial myocytes. Doxorubicin suppressed NP secretion, steady-state NP mRNA levels, and NP gene promoter activity. In each instance, brain NP (BNP) proved to be more sensitive than atrial NP (ANP) to the inhibitory effects of the drug. ICRF-187 and probucol reversed the inhibition by doxorubicin of ANP mRNA accumulation and ANP gene promoter activity while exerting no effect on BNP mRNA levels or promoter activity. This represents the first identification of the NP genes as targets of doxorubicin toxicity in the myocardial cell. This inhibition operates predominantly at a transcriptional locus and has more potent effects on BNP versus ANP secretion/gene expression. Measurement of BNP secretion/gene expression may provide a sensitive marker of early doxorubicin cardiotoxicity
Reorientation of quantum Hall stripes within a partially filled Landau level
We investigate the effect of the filling factor on transport anisotropies,
known as stripes, in high Landau levels of a two-dimensional electron gas. We
find that at certain in-plane magnetic fields, the stripes orientation is
sensitive to the filling factor within a given Landau level. This sensitivity
gives rise to the emergence of stripes away from half-filling while an
orthogonally-oriented, native stripes reside at half-filling. This switching of
the anisotropy axes within a single Landau level can be attributed to a strong
dependence of the native symmetry breaking potential on the filling factor
Correlated patterns in non-monotonic graded-response perceptrons
The optimal capacity of graded-response perceptrons storing biased and
spatially correlated patterns with non-monotonic input-output relations is
studied. It is shown that only the structure of the output patterns is
important for the overall performance of the perceptrons.Comment: 4 pages, 4 figure
Recommended from our members
Tafassasset: The Saga Continues
In this study, we compare data for two separate Tafassasset stones and supply new oxygen isotope data for our sample. We include a discussion of the debate surrounding the classification of Tafassasset and offer a hypothesis for its origin based upon new information
Evidence for a new symmetry breaking mechanism reorienting quantum Hall nematics
We report on the effect of in-plane magnetic field on stripe
phases in higher () Landau levels of a high-mobility 2D electron gas. In
accord with previous studies, we find that a modest applied
parallel to the native stripes aligns them perpendicular to it. However, upon
further increase of , stripes are reoriented back to their native
direction. Remarkably, applying perpendicular to the native
stripes also aligns stripes parallel to it. Thus, regardless of the initial
orientation of stripes with respect to , stripes are ultimately
aligned \emph{parallel} to . These findings provide evidence for a
-induced symmetry breaking mechanism which challenge current
understanding of the role of and should be taken into account
when determining the strength of the native symmetry breaking potential.
Finally, our results might indicate nontrivial coupling between the native and
external symmetry breaking fields, which has not yet been theoretically
considered.Comment: 4 pages, 3 figure
Daytime lidar measurements of tidal winds in the mesospheric sodium layer at Urbana, Illinois
For more than 15 years lidar systems have been used to study the chemistry and dynamics of the mesospheric sodium layer. Because the layer is an excellent tracer of atmospheric wave motions, sodium lidar has proven to be particularly useful for studying the influence of gravity waves and tides on mesospheric dynamics. These waves, which originate in the troposphere and stratosphere, propagate through the mesosphere and dissipate their energy near the mesopause making important contributions to the momentum and turbulence budget in this region of the atmosphere. Recently, the sodium lidar was modified for daytime operation so that wave phenomena and chemical effects could be monitored throughout the complete diurnal cycle. The results of continuous 24 hour lidar observations of the sodium layer structure are presented alond with measurement of the semidiurnal tidal winds
The structure of quantum Lie algebras for the classical series B_l, C_l and D_l
The structure constants of quantum Lie algebras depend on a quantum
deformation parameter q and they reduce to the classical structure constants of
a Lie algebra at . We explain the relationship between the structure
constants of quantum Lie algebras and quantum Clebsch-Gordan coefficients for
adjoint x adjoint ---> adjoint. We present a practical method for the
determination of these quantum Clebsch-Gordan coefficients and are thus able to
give explicit expressions for the structure constants of the quantum Lie
algebras associated to the classical Lie algebras B_l, C_l and D_l.
In the quantum case also the structure constants of the Cartan subalgebra are
non-zero and we observe that they are determined in terms of the simple quantum
roots. We introduce an invariant Killing form on the quantum Lie algebras and
find that it takes values which are simple q-deformations of the classical
ones.Comment: 25 pages, amslatex, eepic. Final version for publication in J. Phys.
A. Minor misprints in eqs. 5.11 and 5.12 correcte
Optimally adapted multi-state neural networks trained with noise
The principle of adaptation in a noisy retrieval environment is extended here
to a diluted attractor neural network of Q-state neurons trained with noisy
data. The network is adapted to an appropriate noisy training overlap and
training activity which are determined self-consistently by the optimized
retrieval attractor overlap and activity. The optimized storage capacity and
the corresponding retriever overlap are considerably enhanced by an adequate
threshold in the states. Explicit results for improved optimal performance and
new retriever phase diagrams are obtained for Q=3 and Q=4, with coexisting
phases over a wide range of thresholds. Most of the interesting results are
stable to replica-symmetry-breaking fluctuations.Comment: 22 pages, 5 figures, accepted for publication in PR
Correlations between hidden units in multilayer neural networks and replica symmetry breaking
We consider feed-forward neural networks with one hidden layer, tree
architecture and a fixed hidden-to-output Boolean function. Focusing on the
saturation limit of the storage problem the influence of replica symmetry
breaking on the distribution of local fields at the hidden units is
investigated. These field distributions determine the probability for finding a
specific activation pattern of the hidden units as well as the corresponding
correlation coefficients and therefore quantify the division of labor among the
hidden units. We find that although modifying the storage capacity and the
distribution of local fields markedly replica symmetry breaking has only a
minor effect on the correlation coefficients. Detailed numerical results are
provided for the PARITY, COMMITTEE and AND machines with K=3 hidden units and
nonoverlapping receptive fields.Comment: 9 pages, 3 figures, RevTex, accepted for publication in Phys. Rev.
- …
