2,989 research outputs found

    Impact of Si nanocrystals in a-SiOx<Er> in C-Band emission for applications in resonators structures

    Full text link
    Si nanocrystals (Si-NC) in a-SiOx were created by high temperature annealing. Si-NC samples have large emission in a broadband region, 700nm to 1000nm. Annealing temperature, annealing time, substrate type, and erbium concentration is studied to allow emission at 1550 nm forsamples with erbium. Emission in the C-Band region is largely reduced by the presence of Si-NC. This reduction may be due to less efficient energy transfer processes from the nanocrystals than from the amorphous matrix to the Er3+ ions, perhaps due to the formation of more centro-symmetric Er3+ sites at the nanocrystal surfaces or to very different optimal erbium concentrations between amorphous and crystallized samples.Comment: 3 pages, 4 figure

    Impact of stellar companions on precise radial velocities

    Full text link
    Context: With the announced arrival of instruments such as ESPRESSO one can expect that several systematic noise sources on the measurement of precise radial velocity will become the limiting factor instead of photon noise. A stellar companion within the fiber is such a possible noise source. Aims: With this work we aim at characterizing the impact of a stellar companion within the fiber to radial velocity measurements made by fiber-fed spectrographs. We consider the contaminant star either to be part of a binary system whose primary star is the target star, or as a background/foreground star. Methods: To carry out our study, we used HARPS spectra, co-added the target with contaminant spectra, and then compared the resulting radial velocity with that obtained from the original target spectrum. We repeated this procedure and used different tunable knobs to reproduce the previously mentioned scenarios. Results: We find that the impact on the radial velocity calculation is a function of the difference between individual radial velocities, of the difference between target and contaminant magnitude, and also of their spectral types. For the worst-case scenario in which both target and contaminant star are well centered on the fiber, the maximum contamination for a G or K star may be higher than 10 cm/s, on average, if the difference between target and contaminant magnitude is Δm\Delta m < 10, and higher than 1 m/s if Δm\Delta m < 8. If the target star is of spectral type M, Δm\Delta m < 8 produces the same contamination of 10 cm/s, and a contamination may be higher than 1 m/sComment: Accepted for publication in A&A on 29/12/2019 - 14 page

    The quantum brachistochrone problem for non-Hermitian Hamiltonians

    Get PDF
    Recently Bender, Brody, Jones and Meister found that in the quantum brachistochrone problem the passage time needed for the evolution of certain initial states into specified final states can be made arbitrarily small, when the time-evolution operator is taken to be non-Hermitian but PT-symmetric. Here we demonstrate that such phenomena can also be obtained for non-Hermitian Hamiltonians for which PT-symmetry is completely broken, i.e. dissipative systems. We observe that the effect of a tunable passage time can be achieved by projecting between orthogonal eigenstates by means of a time-evolution operator associated with a non-Hermitian Hamiltonian. It is not essential that this Hamiltonian is PT-symmetric

    Kepler-447b: a hot-Jupiter with an extremely grazing transit

    Full text link
    We present the radial velocity confirmation of the extrasolar planet Kepler-447b, initially detected as a candidate by the Kepler mission. In this work, we analyze its transit signal and the radial velocity data obtained with the Calar Alto Fiber-fed Echelle spectrograph (CAFE). By simultaneously modeling both datasets, we obtain the orbital and physical properties of the system. According to our results, Kepler-447b is a Jupiter-mass planet (Mp=1.370.46+0.48 MJupM_p=1.37^{+0.48}_{-0.46}~M_{\rm Jup}), with an estimated radius of Rp=1.650.56+0.59 RJupR_p=1.65^{+0.59}_{-0.56}~R_{\rm Jup} (uncertainties provided in this work are 3σ3\sigma unless specified). This translates into a sub-Jupiter density. The planet revolves every 7.8\sim7.8 days in a slightly eccentric orbit (e=0.1230.036+0.037e=0.123^{+0.037}_{-0.036}) around a G8V star with detected activity in the Kepler light curve. Kepler-447b transits its host with a large impact parameter (b=1.0760.086+0.112b=1.076^{+0.112}_{-0.086}), being one of the few planetary grazing transits confirmed so far and the first in the Kepler large crop of exoplanets. We estimate that only around 20% of the projected planet disk occults the stellar disk. The relatively large uncertainties in the planet radius are due to the large impact parameter and short duration of the transit. Planets with such an extremely large impact parameter can be used to detect and analyze interesting configurations such as additional perturbing bodies, stellar pulsations, rotation of a non-spherical planet, or polar spot-crossing events. All these scenarios would periodically modify the transit properties (depth, duration, and time of mid-transit), what could be detectable with sufficient accurate photometry. Short-cadence photometric data (at the 1 minute level) would help in the search for these exotic configurations in grazing planetary transits like that of Kepler-447b.Comment: Accepted for publication in A&A. 13 pages, 8 figures, 4 tables. This version replaces an earlier version of the pape

    Impact of micro-telluric lines on precise radial velocities and its correction

    Full text link
    Context: In the near future, new instruments such as ESPRESSO will arrive, allowing us to reach a precision in radial-velocity measurements on the order of 10 cm/s. At this level of precision, several noise sources that until now have been outweighed by photon noise will start to contribute significantly to the error budget. The telluric lines that are not neglected by the masks for the radial velocity computation, here called micro-telluric lines, are one such noise source. Aims: In this work we investigate the impact of micro-telluric lines in the radial velocities calculations. We also investigate how to correct the effect of these atmospheric lines on radial velocities. Methods: The work presented here follows two parallel lines. First, we calculated the impact of the micro-telluric lines by multiplying a synthetic solar-like stellar spectrum by synthetic atmospheric spectra and evaluated the effect created by the presence of the telluric lines. Then, we divided HARPS spectra by synthetic atmospheric spectra to correct for its presence on real data and calculated the radial velocity on the corrected spectra. When doing so, one considers two atmospheric models for the synthetic atmospheric spectra: the LBLRTM and TAPAS. Results: We find that the micro-telluric lines can induce an impact on the radial velocities calculation that can already be close to the current precision achieved with HARPS, and so its effect should not be neglected, especially for future instruments such as ESPRESSO. Moreover, we find that the micro-telluric lines' impact depends on factors, such as the radial velocity of the star, airmass, relative humidity, and the barycentric Earth radial velocity projected along the line of sight at the time of the observation.Comment: Accepted in A&

    The HARPS search for southern extrasolar planets XXV. Results from the metal-poor sample

    Full text link
    Searching for extrasolar planets around stars of different metallicity may provide strong constraints to the models of planet formation and evolution. In this paper we present the overall results of a HARPS (a high-precision spectrograph mostly dedicated to deriving precise radial velocities) program to search for planets orbiting a sample of 104 metal-poor stars (selected [Fe/H] below -0.5). Radial velocity time series of each star are presented and searched for signals using several statistical diagnostics. Stars with detected signals are presented, including 3 attributed to the presence of previously announced giant planets orbiting the stars HD171028, HD181720, and HD190984. Several binary stars and at least one case of a coherent signal caused by activity-related phenomena are presented. One very promising new, possible giant planet orbiting the star HD107094 is discussed, and the results are analyzed in light of the metallicity-giant planet correlation. We conclude that the frequency of giant planets orbiting metal-poor stars may be higher than previously thought, probably reflecting the higher precision of the HARPS survey. In the metallicity domain of our sample, we also find evidence that the frequency of planets is a steeply rising function of the stellar metal content, as found for higher metallicity stars.Comment: Accepted for publication in A&

    Cumulant expansion of the periodic Anderson model in infinite dimension

    Full text link
    The diagrammatic cumulant expansion for the periodic Anderson model with infinite Coulomb repulsion (U=U=\infty ) is considered here for an hypercubic lattice of infinite dimension (d=d=\infty ). The same type of simplifications obtained by Metzner for the cumulant expansion of the Hubbard model in the limit of d=d=\infty , are shown to be also valid for the periodic Anderson model.Comment: 13 pages, 7 figures.ps. To be published in J. Phys. A: Mathematical and General (1997

    Seleção de descritores para caracterização genética do cupuaçuzeiro, Theobroma grandiflorum (Willd. Ex Spreng.) K. Schum, através de análise multivariada de componentes principais.

    Get PDF
    Publicado também: FRAZÃO, D. A. C.; HOMMA, A. K. O; VIÉGAS, I. de J. M. (Ed.). Contribuição ao desenvolvimento da fruticultura na Amazônia. Belém, PA: Embrapa Amazônia Oriental, 2006. p. 435-439
    corecore