162 research outputs found

    Cooling Tests of the NectarCAM camera for the Cherenkov Telescope Array

    Full text link
    The NectarCAM is a camera proposed for the medium-sized telescopes in the framework of the Cherenkov Telescope Array (CTA), the next-generation observatory for very-high-energy gamma-ray astronomy. The cameras are designed to operate in an open environment and their mechanics must provide protection for all their components under the conditions defined for the CTA observatory. In order to operate in a stable environment and ensure the best physics performance, each NectarCAM will be enclosed in a slightly overpressurized, nearly air-tight, camera body, to prevent dust and water from entering. The total power dissipation will be ~7.7 kW for a 1855-pixel camera. The largest fraction is dissipated by the readout electronics in the modules. We present the design and implementation of the cooling system together with the test bench results obtained on the NectarCAM thermal demonstrator.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    Gemini Planet Imager Observational Calibrations III: Empirical Measurement Methods and Applications of High-Resolution Microlens PSFs

    Full text link
    The newly commissioned Gemini Planet Imager (GPI) combines extreme adaptive optics, an advanced coronagraph, precision wavefront control and a lenslet-based integral field spectrograph (IFS) to measure the spectra of young extrasolar giant planets between 0.9-2.5 um. Each GPI detector image, when in spectral model, consists of ~37,000 microspectra which are under or critically sampled in the spatial direction. This paper demonstrates how to obtain high-resolution microlens PSFs and discusses their use in enhancing the wavelength calibration, flexure compensation and spectral extraction. This method is generally applicable to any lenslet-based integral field spectrograph including proposed future instrument concepts for space missions.Comment: 10 pages, 6 figures. Proceedings of the SPIE, 9147-282 v2: reference adde

    The Wide-Field X and Gamma-Ray Telescope ECLAIRs aboard the Gamma-Ray Burst Multi-Wavelength Space Mission SVOM

    Full text link
    The X and Gamma-ray telescope ECLAIRs is foreseen to be launched on a low Earth orbit (h=630 km, i=30 degrees) aboard the SVOM satellite (Space-based multi-band astronomical Variable Objects Monitor), a French-Chinese mission with Italian contribution. Observations are expected to start in 2013. It has been designed to detect and localize Gamma-Ray Bursts (GRBs) or persistent sources of the sky, thanks to its wide field of view (about 2 sr) and its remarkable sensitivity in the 4-250 keV energy range, with enhanced imaging sensitivity in the 4-70 keV energy band. These characteristics are well suited to detect highly redshifted GRBs, and consequently to provide fast and accurate triggers to other onboard or ground-based instruments able to follow-up the detected events in a very short time from the optical wavelength bands up to the few MeV Gamma-Ray domain.Comment: Proccedings of the "2008 Nanjing GRB Conference", June 23-27 2008, Nanjing, Chin

    NectarCAM : a camera for the medium size telescopes of the Cherenkov Telescope Array

    Full text link
    NectarCAM is a camera proposed for the medium-sized telescopes of the Cherenkov Telescope Array (CTA) covering the central energy range of ~100 GeV to ~30 TeV. It has a modular design and is based on the NECTAr chip, at the heart of which is a GHz sampling Switched Capacitor Array and a 12-bit Analog to Digital converter. The camera will be equipped with 265 7-photomultiplier modules, covering a field of view of 8 degrees. Each module includes the photomultiplier bases, high voltage supply, pre-amplifier, trigger, readout and Ethernet transceiver. The recorded events last between a few nanoseconds and tens of nanoseconds. The camera trigger will be flexible so as to minimize the read-out dead-time of the NECTAr chips. NectarCAM is designed to sustain a data rate of more than 4 kHz with less than 5\% dead time. The camera concept, the design and tests of the various subcomponents and results of thermal and electrical prototypes are presented. The design includes the mechanical structure, cooling of the electronics, read-out, clock distribution, slow control, data-acquisition, triggering, monitoring and services.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    Second order averaging for the nonlinear Schroedinger equation with strongly anisotropic potential

    Get PDF
    International audienceWe consider the three dimensional Gross-Pitaevskii equation (GPE) describing a Bose-Einstein Condensate (BEC) which is highly confi ned in vertical z direction. The highly confi ned potential induces high oscillations in time. If the confi nement in the z direction is a harmonic trap (which is widely used in physical experiments), the very special structure of the spectrum of the confi nement operator will imply that the oscillations are periodic in time. Based on this observation, it can be proved that the GPE can be averaged out with an error of order of epsilon, which is the typical period of the oscillations. In this article, we construct a more accurate averaged model, which approximates the GPE up to errors of order epsilon squared. Then, expansions of this model over the eigenfunctions (modes) of the vertical Hamiltonian Hz are given in convenience of numerical application. Effi cient numerical methods are constructed for solving the GPE with cylindrical symmetry in 3D and the approximation model with radial symmetry in 2D, and numerical results are presented for various kinds of initial data

    Pfmrk, a MO15-related protein kinase from Plasmodium falciparum. Gene cloning, sequence, stage-specific expression and chromosome localization.

    Get PDF
    Cyclin-dependent kinases (Cdks) play a central role in the regulation of the eukaryotic cell cycle. A novel gene encoding a Cdk-like protein, Pfmrk, has been isolated from the human malaria parasite Plasmodium falciparum. The gene has no introns and comprises an open reading frame encoding a protein of 324 amino acids with a predicted molecular mass of 38 kDa. Database searches revealed a striking similarity to the Cdk subfamily with the highest similarity to human MO15 (Cdk7). The overall sequence of Pfmrk shares 62% similarity and 46% identity with human MO15, in comparison to the 49-58% similarity and 34-43% identity with other human Cdks. Pfmrk contains two unique inserts: one consisting of 5 amino acids just before the cyclin-binding motif and the other composed of 13 amino acids within the T-loop equivalent region. Southern blots of genomic DNA digests and chromosomal separations showed that Pfmrk is a single-copy gene conserved between several parasite strains and is located on chromosome 10. A 2500-nucleotide transcript of this gene is expressed predominantly in the sexual blood stages (gametocytes), suggesting that Pfmrk may be involved in sexual stage development

    Final results of the EDELWEISS-I dark matter search with cryogenic heat-and-ionization Ge detectors

    Full text link
    The final results of the EDELWEISS-I dark matter search using cryogenic heat-and-ionization Ge detectors are presented. The final data sample corresponds to an increase by a factor five in exposure relative to the previously published results. A recoil energy threshold of 13 keV or better was achieved with three 320g detectors working simultaneously over four months of stable operation. Limits on the spin-independent cross-section for the scattering of a WIMP on a nucleon are derived from an accumulated fiducial exposure of 62 kg.d.Comment: 42 pages, 16 figures, submitted to Physical Review D, 1 figure and 2 references added, some little changes in the tex

    Sensitivity of the EDELWEISS WIMP search to spin-dependent interactions

    Get PDF
    The EDELWEISS collaboration is searching for WIMP dark matter using natural Ge cryogenic detectors. The whole data set of the first phase of the experiment contains a fiducial exposure of 4.8 kg.day on Ge-73, the naturally present (7.8%), high-spin Ge isotope. The sensitivity of the experiment to the spin-dependent WIMP-nucleon interactions is evaluated using the model-independent framework proposed by Tovey et al.Comment: v2: new references and figures added, other minor changes. Accepted for publication in Physics Letters

    Cdc7p-Dbf4p Regulates Mitotic Exit by Inhibiting Polo Kinase

    Get PDF
    Cdc7p-Dbf4p is a conserved protein kinase required for the initiation of DNA replication. The Dbf4p regulatory subunit binds Cdc7p and is essential for Cdc7p kinase activation, however, the N-terminal third of Dbf4p is dispensable for its essential replication activities. Here, we define a short N-terminal Dbf4p region that targets Cdc7p-Dbf4p kinase to Cdc5p, the single Polo kinase in budding yeast that regulates mitotic progression and cytokinesis. Dbf4p mediates an interaction with the Polo substrate-binding domain to inhibit its essential role during mitosis. Although Dbf4p does not inhibit Polo kinase activity, it nonetheless inhibits Polo-mediated activation of the mitotic exit network (MEN), presumably by altering Polo substrate targeting. In addition, although dbf4 mutants defective for interaction with Polo transit S-phase normally, they aberrantly segregate chromosomes following nuclear misorientation. Therefore, Cdc7p-Dbf4p prevents inappropriate exit from mitosis by inhibiting Polo kinase and functions in the spindle position checkpoint
    corecore