86 research outputs found

    Cu based patch antenna on polymer substrate for flexible wireless sensor systems applications

    Get PDF
    AbstractIn this work we designed, simulated and developed a flexible 10 GHz patch antenna using standard microsystem technology. Liquid crystal polymer (LCP) is used as substrate and Copper (Cu) as metallization thin film. LCP and Cu are best suited for high frequency applications because of their excellent electrical properties such as resistivity and dielectric constant. To protect the antenna it is passivated and encapsulated with parylene C. Parylene C was deposited at room temperature using standard Gorham system. The effect of Cu metallization and parylene C passivation on antenna indicator parameters such as resonance frequency, input reflection coefficient, bandwidth and gain are investigated. Furthermore the specific resistance of Cu lines on LCP substrates is investigated

    Preparing Future Librarians and Current Information Professionals to Lead Libraries in Times of Crisis

    Get PDF
    Libraries today are expected to be a hub of information service providers and also serve as catalysts for community engagement. LIS education programs are responsible for producing proficient future librarians who will be strong advocates of innovative services to their communities and who can rise to the occasion in providing community-first disaster and health information services. However, one of the most difficult tasks is developing LIS pedagogy that can be delivered both in traditional classrooms and online. To that end, in October 2015, faculty members and graduate students from the School of Library and Information at the University of South Carolina began collaborating with professional librarians from local libraries and the South Carolina State Library to investigate public libraries’ value to their communities in providing critical information services, as well as the libraries’ legitimacy as partners of public health agencies at a time of catastrophic flooding. In 2017, a survey study examined how community members had accessed information during the 2015 flooding and during Hurricane Matthew in October 2016. Situation-specific research conducted in the third study targeted the Houston Public Library system’s main library and its branches affected by Hurricane Harvey in 2017. Librarians’ basic required competencies have been identified. The majority of these competencies and their skill sets have been integrated into the curriculum of the SLIS/USC. A new course, tentatively titled “Community Engagement and Empowerment through Information Environments,” is under development. Continuing education programs and professional development opportunities are also being developed to better prepare professional librarians to provide disaster and health information services

    Evaluation of the two-photon exchange diagrams for the (1s)22p3/2(1s)^2 2p_{3/2} electron configuration in Li-like ions

    Full text link
    We present ab initio calculations of the complete gauge-invariant set of two-photon exchange graphs for the (1s)22p3/2(1s)^2 2p_{3/2} electron configuration in Li-like ions. These calculations are an important step towards the precise theoretical determination of the 2p3/22p_{3/2}-2s2s transition energy in the framework of QED.Comment: 17 pages, 6 figure

    Dendritic Cells Transduced to Express Interleukin 4 Reduce Diabetes Onset in Both Normoglycemic and Prediabetic Nonobese Diabetic Mice

    Get PDF
    Background: We and others have previously demonstrated that treatment with bone marrow derived DC genetically modified to express IL-4 reduce disease pathology in mouse models of collagen-induced arthritis and delayed-type hypersensitivity. Moreover, treatment of normoglycemic NOD mice with bone marrow derived DC, genetically modified to express interleukin 4 (IL-4), reduces the onset of hyperglycemia in a significant number of animals. However, the mechanism(s) through which DC expressing IL-4 function to prevent autoimmune diabetes and whether this treatment can reverse disease in pre-diabetic NOD mice are unknown. Methodology/Principal Findings: DC were generated from the bone marrow of NOD mice and transduced with adenoviral vectors encoding soluble murine IL-4 (DC/sIL-4), a membrane-bound IL-4 construct, or empty vector control. Female NOD mice were segregated into normoglycemic (<150mg/dL) and prediabetic groups (between 150 and 250 mg/dL) on the basis of blood glucose measurements, and randomized for adoptive transfer of 106 DC via a single i.v. injection. A single injection of DC/sIL-4, when administered to normoglycemic 12-week old NOD mice, significantly reduced the number of mice that developed diabetes. Furthermore, DC/sIL-4, but not control DC, decreased the number of mice progressing to diabetes when given to prediabetic NOD mice 12-16 weeks of age. DC/sIL-4 treatment also significantly reduced islet mononuclear infiltration and increased the expression of FoxP3 in the pancreatic lymph nodes of a subset of treated animals. Furthermore, DC/sIL-4 treatment altered the antigen-specific Th2:Th1 cytokine profiles as determined by ELISPOT of splenocytes in treated animals. Conclusions: Adoptive transfer of DC transduced to express IL-4 into both normoglycemic and prediabetic NOD mice is an effective treatment for T1D. © 2010 Ruffner, Robbins

    Overturning in the Subpolar North Atlantic Program: A New International Ocean Observing System

    Get PDF
    For decades oceanographers have understood the Atlantic meridional overturning circulation (AMOC) to be primarily driven by changes in the production of deep-water formation in the subpolar and subarctic North Atlantic. Indeed, current Intergovernmental Panel on Climate Change (IPCC) projections of an AMOC slowdown in the twenty-first century based on climate models are attributed to the inhibition of deep convection in the North Atlantic. However, observational evidence for this linkage has been elusive: there has been no clear demonstration of AMOC variability in response to changes in deep-water formation. The motivation for understanding this linkage is compelling, since the overturning circulation has been shown to sequester heat and anthropogenic carbon in the deep ocean. Furthermore, AMOC variability is expected to impact this sequestration as well as have consequences for regional and global climates through its effect on the poleward transport of warm water. Motivated by the need for a mechanistic understanding of the AMOC, an international community has assembled an observing system, Overturning in the Subpolar North Atlantic Program (OSNAP), to provide a continuous record of the transbasin fluxes of heat, mass, and freshwater, and to link that record to convective activity and water mass transformation at high latitudes. OSNAP, in conjunction with the Rapid Climate Change–Meridional Overturning Circulation and Heatflux Array (RAPID–MOCHA) at 26°N and other observational elements, will provide a comprehensive measure of the three-dimensional AMOC and an understanding of what drives its variability. The OSNAP observing system was fully deployed in the summer of 2014, and the first OSNAP data products are expected in the fall of 2017

    Rapid Turnover of 2-LTR HIV-1 DNA during Early Stage of Highly Active Antiretroviral Therapy

    Get PDF
    BACKGROUND: Despite prolonged treatment with highly active antiretroviral therapy (HAART), the infectious HIV-1 continues to replicate and resides latently in the resting memory CD4+ T lymphocytes, which blocks the eradication of HIV-1. The viral persistence of HIV-1 is mainly caused by its proviral DNA being either linear nonintegrated, circular nonintegrated, or integrated. Previous reports have largely focused on the dynamics of HIV-1 DNA from the samples collected with relatively long time intervals during the process of disease and HAART treatment, which may have missed the intricate changes during the intervals in early treatment. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we investigated the dynamics of HIV-1 DNA in patients during the early phase of HARRT treatment. Using optimized real time PCR, we observed significant changes in 2-LTR during the first 12-week of treatment, while total and integrated HIV-1 DNA remained stable. The doubling time and half-life of 2-LTR were not correlated with the baseline and the rate of changes in plasma viral load and various CD4+ T-cell populations. Longitudinal analyses on 2-LTR sequences and plasma lipopolysaccharide (LPS) levels did not reveal any significant changes in the same treatment period. CONCLUSIONS/SIGNIFICANCE: Our study revealed the rapid changes in 2-LTR concentration in a relatively large number of patients during the early HAART treatment. The rapid changes indicate the rapid infusion and clearance of cells bearing 2-LTR in the peripheral blood. Those changes are not expected to be caused by the blocking of viral integration, as our study did not include the integrase inhibitor raltegravir. Our study helps better understand the dynamics of HIV-DNA and its potential role as a biomarker for the diseases and for the treatment efficacy of HAART

    Global Oceans

    Get PDF
    Global Oceans is one chapter from the State of the Climate in 2019 annual report and is avail-able from https://doi.org/10.1175/BAMS-D-20-0105.1. Compiled by NOAA’s National Centers for Environmental Information, State of the Climate in 2019 is based on contr1ibutions from scien-tists from around the world. It provides a detailed update on global climate indicators, notable weather events, and other data collected by environmental monitoring stations and instru-ments located on land, water, ice, and in space. The full report is available from https://doi.org /10.1175/2020BAMSStateoftheClimate.1

    Micro-Newton Electric Propulsion Subsystems for Ultra-Stable Platforms

    No full text
    • …
    corecore