433 research outputs found
On-the-fly Uniformization of Time-Inhomogeneous Infinite Markov Population Models
This paper presents an on-the-fly uniformization technique for the analysis
of time-inhomogeneous Markov population models. This technique is applicable to
models with infinite state spaces and unbounded rates, which are, for instance,
encountered in the realm of biochemical reaction networks. To deal with the
infinite state space, we dynamically maintain a finite subset of the states
where most of the probability mass is located. This approach yields an
underapproximation of the original, infinite system. We present experimental
results to show the applicability of our technique
Measuring the Polarization of a Rapidly Precessing Deuteron Beam
This paper describes a time-marking system that enables a measurement of the
in-plane (horizontal) polarization of a 0.97-GeV/c deuteron beam circulating in
the Cooler Synchrotron (COSY) at the Forschungszentrum J\"ulich. The clock time
of each polarimeter event is used to unfold the 120-kHz spin precession and
assign events to bins according to the direction of the horizontal
polarization. After accumulation for one or more seconds, the down-up
scattering asymmetry can be calculated for each direction and matched to a
sinusoidal function whose magnitude is proportional to the horizontal
polarization. This requires prior knowledge of the spin tune or polarization
precession rate. An initial estimate is refined by re-sorting the events as the
spin tune is adjusted across a narrow range and searching for the maximum
polarization magnitude. The result is biased toward polarization values that
are too large, in part because of statistical fluctuations but also because
sinusoidal fits to even random data will produce sizeable magnitudes when the
phase is left free to vary. An analysis procedure is described that matches the
time dependence of the horizontal polarization to templates based on
emittance-driven polarization loss while correcting for the positive bias. This
information will be used to study ways to extend the horizontal polarization
lifetime by correcting spin tune spread using ring sextupole fields and thereby
to support the feasibility of searching for an intrinsic electric dipole moment
using polarized beams in a storage ring. This paper is a combined effort of the
Storage Ring EDM Collaboration and the JEDI Collaboration.Comment: 28 pages, 15 figures, prepared for Physical Review ST - Accelerators
and Beam
Stochastic modelling of reaction-diffusion processes: algorithms for bimolecular reactions
Several stochastic simulation algorithms (SSAs) have been recently proposed
for modelling reaction-diffusion processes in cellular and molecular biology.
In this paper, two commonly used SSAs are studied. The first SSA is an
on-lattice model described by the reaction-diffusion master equation. The
second SSA is an off-lattice model based on the simulation of Brownian motion
of individual molecules and their reactive collisions. In both cases, it is
shown that the commonly used implementation of bimolecular reactions (i.e. the
reactions of the form A + B -> C, or A + A -> C) might lead to incorrect
results. Improvements of both SSAs are suggested which overcome the
difficulties highlighted. In particular, a formula is presented for the
smallest possible compartment size (lattice spacing) which can be correctly
implemented in the first model. This implementation uses a new formula for the
rate of bimolecular reactions per compartment (lattice site).Comment: 33 pages, submitted to Physical Biolog
Wind-US Code Physical Modeling Improvements to Complement Hypersonic Testing and Evaluation
This report gives an overview of physical modeling enhancements to the Wind-US flow solver which were made to improve the capabilities for simulation of hypersonic flows and the reliability of computations to complement hypersonic testing. The improvements include advanced turbulence models, a bypass transition model, a conjugate (or closely coupled to vehicle structure) conduction-convection heat transfer capability, and an upgraded high-speed combustion solver. A Mach 5 shock-wave boundary layer interaction problem is used to investigate the benefits of k- s and k-w based explicit algebraic stress turbulence models relative to linear two-equation models. The bypass transition model is validated using data from experiments for incompressible boundary layers and a Mach 7.9 cone flow. The conjugate heat transfer method is validated for a test case involving reacting H2-O2 rocket exhaust over cooled calorimeter panels. A dual-mode scramjet configuration is investigated using both a simplified 1-step kinetics mechanism and an 8-step mechanism. Additionally, variations in the turbulent Prandtl and Schmidt numbers are considered for this scramjet configuration
Dependence of pp->pp pi0 near Threshold on the Spin of the Colliding Nucleons
A polarized internal atomic hydrogen target and a stored, polarized beam are
used to measure the spin-dependent total cross section Delta_sigma_T/sigma_tot,
as well as the polar integrals of the spin correlation coefficient combination
A_xx-A_yy, and the analyzing power A_y for pp-> pp pi0 at four bombarding
energies between 325 and 400 MeV. This experiment is made possible by the use
of a cooled beam in a storage ring. The polarization observables are used to
study the contribution from individual partial waves.Comment: 6 pages, 1 table, 4 figures, corrected equations 2 and
Toward polarized antiprotons: Machine development for spin-filtering experiments
The paper describes the commissioning of the experimental equipment and the
machine studies required for the first spin-filtering experiment with protons
at a beam kinetic energy of MeV in COSY. The implementation of a
low- insertion made it possible to achieve beam lifetimes of
s in the presence of a dense polarized hydrogen
storage-cell target of areal density . The developed techniques can be directly
applied to antiproton machines and allow for the determination of the
spin-dependent cross sections via spin filtering
Spin tune mapping as a novel tool to probe the spin dynamics in storage rings
Precision experiments, such as the search for electric dipole moments of
charged particles using storage rings, demand for an understanding of the spin
dynamics with unprecedented accuracy. The ultimate aim is to measure the
electric dipole moments with a sensitivity up to 15 orders in magnitude better
than the magnetic dipole moment of the stored particles. This formidable task
requires an understanding of the background to the signal of the electric
dipole from rotations of the spins in the spurious magnetic fields of a storage
ring. One of the observables, especially sensitive to the imperfection magnetic
fields in the ring is the angular orientation of stable spin axis. Up to now,
the stable spin axis has never been determined experimentally, and in addition,
the JEDI collaboration for the first time succeeded to quantify the background
signals that stem from false rotations of the magnetic dipole moments in the
horizontal and longitudinal imperfection magnetic fields of the storage ring.
To this end, we developed a new method based on the spin tune response of a
machine to artificially applied longitudinal magnetic fields. This novel
technique, called \textit{spin tune mapping}, emerges as a very powerful tool
to probe the spin dynamics in storage rings. The technique was experimentally
tested in 2014 at the cooler synchrotron COSY, and for the first time, the
angular orientation of the stable spin axis at two different locations in the
ring has been determined to an unprecedented accuracy of better than
rad.Comment: 32 pages, 15 figures, 7 table
Phase Measurement for Driven Spin Oscillations in a Storage Ring
This paper reports the first simultaneous measurement of the horizontal and
vertical components of the polarization vector in a storage ring under the
influence of a radio frequency (rf) solenoid. The experiments were performed at
the Cooler Synchrotron COSY in J\"ulich using a vector polarized, bunched
deuteron beam. Using the new spin feedback system, we
set the initial phase difference between the solenoid field and the precession
of the polarization vector to a predefined value. The feedback system was then
switched off, allowing the phase difference to change over time, and the
solenoid was switched on to rotate the polarization vector. We observed an
oscillation of the vertical polarization component and the phase difference.
The oscillations can be described using an analytical model. The results of
this experiment also apply to other rf devices with horizontal magnetic fields,
such as Wien filters. The precise manipulation of particle spins in storage
rings is a prerequisite for measuring the electric dipole moment (EDM) of
charged particles
Exclusive Measurements of pp -> dpi+pi0: Double-Pionic Fusion without ABC Effect
Exclusive measurements of the reaction pp -> dpi+pi0 have been carried out at
T_p = 1.1 GeV at the CELSIUS storage ring using the WASA detector. The
isovector pi+pi0 channel exhibits no enhancement at low invariant pipi masses,
i. e. no ABC effect. The differential distributions are in agreement with the
conventional t-channel Delta-Delta excitation process, which also accounts for
the observed energy dependence of the total cross section. This is an update of
a previously published version -- see important note at the end of the article
Physicians' messages in problematic sickness certification: a narrative analysis of case reports
<p>Abstract</p> <p>Background</p> <p>Many physicians find sickness certification tasks problematic. There is some knowledge about situations that are experienced as problematic, whereas less is understood about how physicians respond to the problems they face. One way to acquire such knowledge is to consider "reflection-in-action", aspects of which are expressed in the physician's interpretation of the patient's story. The aim of this study was to gain knowledge about the meaning content of case reports about problematic sickness certification. Specifically, we looked for possible messages to the colleagues intended to read the reports.</p> <p>Methods</p> <p>A narrative approach was used to analyse reports about problematic sickness certification cases that had been written by GPs and occupational health service physicians as part of a sickness insurance course. The analysis included elements from both thematic and structural analysis. Nineteen case reports were used in the actual analysis and 25 in the validation of the results. Main narrative qualities and structural features of the written case reports were explored.</p> <p>Results</p> <p>Five types of messages were identified in the case reports, here classified as "a call for help", "a call for understanding", "hidden worries", "in my opinion", and "appearing neutral". In the reports, the physicians tried to achieve neutrality in their writing, and the patients' stories tended to be interpreted within a traditional biomedical framework. In some cases there was an open request for help, in others it was not obvious that the physician had any problems. Overall, the messages were about having problems as such, rather than the specific features of the problems.</p> <p>Conclusions</p> <p>The case reports clearly demonstrated different ways of writing about problems that arise during sickness certification, from being neutral and not mentioning the problems to being emotionally involved and asking for help. The general character of the messages suggests that they are also relevant for case reports in problematic areas other than sickness certification. If pertinent relationships can be found between reflection-in-practice and the narrative writing about practice, they will provide an approach to further research concerning consultations perceived as problematic and also to medical education.</p
- …