32 research outputs found

    Noradrenergic plasticity of olfactory sensory neuron inputs to the main olfactory bulb

    Get PDF
    Sensory responses are modulated by internal factors including attention, experience, and brain state. This is partly due to fluctuations in neuromodulatory input from regions such as the noradrenergic locus ceruleus (LC) in the brainstem. LC activity changes with arousal and modulates sensory processing, cognition, and memory. The main olfactory bulb (MOB) is richly targeted by LC fibers and noradrenaline profoundly influences MOB circuitry and odor-guided behavior. Noradrenaline-dependent plasticity affects the output of the MOB; however. it is unclear whether noradrenergic plasticity also affects the input to the MOB from olfactory sensory neurons (OSNs) in the glomerular layer. Noradrenergic terminals are found in the glomerular layer, but noradrenaline receptors do not seem to acutely modulate OSN terminals in vitro. We investigated whether noradrenaline induces plasticity at the glomerulus. We used wide-field optical imaging to measure changes in odor responses following electrical stimulation of LC in anesthetized mice. Surprisingly, odor-evoked intrinsic optical signals at the glomerulus were persistently weakened after LC activation. Calcium imaging selectively from OSNs confirmed that this effect was due to suppression of presynaptic input and was prevented by noradrenergic antagonists. Finally, suppression of responses to an odor did not require precise coincidence of the odor with LC activation. However, suppression was intensified by LC activation in the absence of odors. We conclude that noradrenaline release from LC has persistent effects on odor processing already at the first synapse of the main olfactory system. This mechanism could contribute to arousal-dependent memories

    Influence of production variables and starting material on charcoal stable isotopic and molecular characteristics

    Get PDF
    We present a systematic study on the effect of starting species, gas composition, temperature, particle size and duration of heating upon the molecular and stable isotope composition of high density (mangrove) and low density (pine) wood. In both pine and mangrove, charcoal was depleted in o13C relative to the starting wood by up to 1.6% and 0.8%, respectively. This is attributed predominantly to the progressive loss of isotopically heavier polysaccharides, and kinetic effects of aromatization during heating. However, the pattern of o13C change was dependant upon both starting species and atmosphere, with different structural changes associated with charcoal production from each wood type elucidated by Solid-State o13C Nuclear Magnetic Resonance Spectroscopy. These are particularly evident at lower temperatures, where variation in the oxygen content of the production atmosphere results in differences in the thermal degradation of cellulose and lignin. It is concluded that production of charcoal from separate species in identical conditions, or from a single sample exposed to different production variables, can result in significantly different o13C of the resulting material, relative to the initial wood. These results have implications for the use of charcoal isotope composition to infer past environmental change

    Gaze Strategy in the Free Flying Zebra Finch (Taeniopygia guttata)

    Get PDF
    Fast moving animals depend on cues derived from the optic flow on their retina. Optic flow from translational locomotion includes information about the three-dimensional composition of the environment, while optic flow experienced during a rotational self motion does not. Thus, a saccadic gaze strategy that segregates rotations from translational movements during locomotion will facilitate extraction of spatial information from the visual input. We analysed whether birds use such a strategy by highspeed video recording zebra finches from two directions during an obstacle avoidance task. Each frame of the recording was examined to derive position and orientation of the beak in three-dimensional space. The data show that in all flights the head orientation was shifted in a saccadic fashion and was kept straight between saccades. Therefore, birds use a gaze strategy that actively stabilizes their gaze during translation to simplify optic flow based navigation. This is the first evidence of birds actively optimizing optic flow during flight

    Lithological and topographic impact on soil nutrient distributions in tectonic landscapes: implications for Pleistocene human-landscape interactions in the southern Kenya Rift

    No full text
    International audienceTectonically active regions are characterized by complex landscapes comprising soils with heterogeneous physicochemical properties. Spatial variability of nutrient sources enhances landscape biodiversity and creates heterogeneous habitats potentially attractive for animals and humans. In this study, we analyze the role of geological processes in the distributions of soil nutrients in the southern Kenya Rift, a key region in the interpretation of early human-landscape interactions. Our aim is to determine how spatial variations in rock chemistry, as well as topographic gradients and localized zones of rock fracturing from tectonic faulting determine the distributions of plant-available soil nutrients in soils. We hypothesize that present-day soil nutrient levels reflect the long-term chemical and geomorphological characteristics of the landscape and underlying parent material, and that regions with high nutrient availability occur along pathways correlating with locations of hominin fossil sites. Analyses of 91 topsoil samples from the main geological units show that Calcium (Ca) deficiencies predominately occur in shallow soils developed on trachytic volcanic rocks and granitic gneisses, while high Ca levels are associated with basaltic parent material and sedimentary deposits of mixed sources. XRF analysis of rock samples confirms that CaO levels in trachyte rocks are significantly lower than those in basalts, and Ca mobilization in basalt is more effective than in trachyte. Along two toposequences in densely faulted basaltic and trachytic rocks, we observed slope dependent soil nutritional gradients and a systematic increase of the concentrations of Ca, Mg and SOC in topsoils of colluvial sediments downslope of active normal faults. Known hominin sites in the region are located either along corridors of long-term Ca availability or at short-term nutrient hotspots potentially related to active CO2 degassing along active fault zones. This implies a strategic advantage of Ca-rich regions for hominin subsistence strategies, such as provision of predictable constraints on the distribution and mobility of grazing animals in complex tectonic landscapes. Our study implies that geological processes impact nutrient distributions in the southern Kenya Rift. Results of this study have further implications for understanding the role of soils in the interpretation of hominin-landscape interactions in the early stages of human evolution

    Lithological and Topographic Impact on Soil Nutrient Distributions in Tectonic Landscapes: Implications for Pleistocene Human-Landscape Interactions in the Southern Kenya Rift

    No full text
    Tectonically active regions are characterized by complex landscapes comprising soils with heterogeneous physicochemical properties. Spatial variability of nutrient sources enhances landscape biodiversity and creates heterogeneous habitats potentially attractive for animals and humans. In this study, we analyze the role of geological processes in the distributions of soil nutrients in the southern Kenya Rift, a key region in the interpretation of early human-landscape interactions. Our aim is to determine how spatial variations in rock chemistry, as well as topographic gradients and localized zones of rock fracturing from tectonic faulting determine the distributions of plant-available soil nutrients in soils. We hypothesize that present-day soil nutrient levels reflect the long-term chemical and geomorphological characteristics of the landscape and underlying parent material, and that regions with high nutrient availability occur along pathways correlating with locations of hominin fossil sites. Analyses of 91 topsoil samples from the main geological units show that Calcium (Ca) deficiencies predominately occur in shallow soils developed on trachytic volcanic rocks and granitic gneisses, while high Ca levels are associated with basaltic parent material and sedimentary deposits of mixed sources. XRF analysis of rock samples confirms that CaO levels in trachyte rocks are significantly lower than those in basalts, and Ca mobilization in basalt is more effective than in trachyte. Along two toposequences in densely faulted basaltic and trachytic rocks, we observed slope dependent soil nutritional gradients and a systematic increase of the concentrations of Ca, Mg and SOC in topsoils of colluvial sediments downslope of active normal faults. Known hominin sites in the region are located either along corridors of long-term Ca availability or at short-term nutrient hotspots potentially related to active CO2 degassing along active fault zones. This implies a strategic advantage of Ca-rich regions for hominin subsistence strategies, such as provision of predictable constraints on the distribution and mobility of grazing animals in complex tectonic landscapes. Our study implies that geological processes impact nutrient distributions in the southern Kenya Rift. Results of this study have further implications for understanding the role of soils in the interpretation of hominin-landscape interactions in the early stages of human evolution.</jats:p

    Conversion of biomass to charcoal and the carbon mass balance from a slash-and-burn experiment in a temperate deciduous forest

    Full text link
    Anthropogenic burning, including slash-and-burn, was deliberately used in (pre)historic Central Europe. Biomass burning has affected the global carbon cycle since, presumably, the early Holocene. The understanding of processes and rates of charcoal formation in temperate deciduous forests is limited, as is the extent of prehistoric human impact on the environment. We took advantage of an experimental burning to simulate Neolithic slash-and-burn, and we quantified the biomass fuel and charcoal produced, determined the resulting distribution of the charcoal size fractions and calculated the carbon mass balance. Two-thirds of the charcoal particles (6.71 t/ha) were larger than 2000m and the spatial distribution of charcoal was highly variable (15–90% per m2). The conversion rate of the biomass fuel to charcoal mass was 4.8%, or 8.1% for the conversion of biomass carbon to charcoal carbon, and 58.4 t C/ha was lost during the fire, presumably as a component of aerosols or gases

    Are olfactory cues involved in nest recognition in two social species of estrildid finches?

    Get PDF
    Krause ET, Caspers B. Are olfactory cues involved in nest recognition in two social species of estrildid finches? PLoS ONE. 2012;7(5): e36615.Reliably recognizing their own nest provides parents with a necessary skill to invest time and resources efficiently in raising their offspring and thereby maximising their own reproductive success. Studies investigating nest recognition in adult birds have focused mainly on visual cues of the nest or the nest site and acoustic cues of the nestlings. To determine whether adult songbirds also use olfaction for nest recognition, we investigated the use of olfactory nest cues for two estrildid finch species, zebra finches (Taeniopygia guttata) and Bengalese finches (Lonchura striata var. domestica) during the nestling and fledgling phase of their offspring. We found similar behavioural responses to nest odours in both songbird species. Females preferred the odour of their own nest over a control and avoided the foreign conspecific nest scent over a control during the nestling phase of their offspring, but when given the own odour and the foreign conspecific odour simultaneously we did not find a preference for the own nest odour. Males of both species did not show any preferences at all. The behavioural reaction to any nest odour decreased after fledging of the offspring. Our results show that only females show a behavioural response to olfactory nest cues, indicating that the use of olfactory cues for nest recognition seems to be sex-specific and dependent on the developmental stage of the offspring. Although estrildid finches are known to use visual and acoustic cues for nest recognition, the similar behavioural pattern of both species indicates that at least females gain additional information by olfactory nest cues during the nestling phase of their offspring. Thus olfactory cues might be important in general, even in situations in which visual and acoustic cues are known to be sufficient
    corecore