287 research outputs found

    The spatial distribution of leprosy in four villages in Bangladesh: An observational study

    Get PDF
    BACKGROUND: There is a higher case-detection rate for leprosy among spatially proximate contacts such as household members and neighbors. Spatial information regarding the clustering of leprosy can be used to improve intervention strategies. Identifying high-risk areas within villages around known cases can be helpful in finding new cases. METHODS: Using geographic information systems, we created digital maps of four villages in a highly endemic area in northwest Bangladesh. The villages were surveyed three times over four years. The spatial pattern of the compounds--a small group of houses--was analyzed, and we looked for spatial clusters of leprosy cases. RESULTS: The four villages had a total population of 4,123. There were 14 previously treated patients and we identified 19 new leprosy patients during the observation period. However, we found no spatial clusters with a probability significantly different from the null hypothesis of random occurrence. CONCLUSION: Spatial analysis at the microlevel of villages in highly endemic areas does not appear to be useful for identifying clusters of patients. The search for clustering should be extended to a higher aggregation level, such as the subdistrict or regional level. Additionally, in highly endemic areas, it appears to be more effective to target complete villages for contact tracing, rather than narrowly defined contact groups such as households

    Spatial segregation measures: a methodological review

    Get PDF
    Quantitative indices of segregation are powerful tools for summarising the spatial relationships between population groups and thereby providing the basis for analysis and public policy intervention. While the broad concept of segregation may be intuitive, measurement is challenging because of the complexity of varied dimensions and spatial arrangements. Many traditional measures can be criticised for over-simplification or over-reduction, not least in their treatment of geographical space. Over the last several decades, however, a series of measures has been developed to explicitly incorporate the spatial arrangement of population groups as well as their interactions. This paper reviews the development of spatial segregation measures, particularly focusing on the mathematical formulation of spatial arrangement/relations. In addition, several related issues are discussed, including representation of spatial interaction, spatial scale and statistical inferences. Also, this paper presents an overview of existing software tools that are readily available for calculating some of the reviewed measures. Finally, discussions on challenges and future research are provided

    Simulating marine current turbine wakes with advanced turbulence models

    Get PDF
    Work is presented which compares the abilities of the Detached Eddy Simulation turbulence model to a Reynolds-Averaged Navier-Stokes turbulence model, for CFD simulations of a horizontal axis tidal turbine under different ambient turbulence conditions. Comparisons are made of the abilities of the respective models to predict both performance characteristics as well as wake length and character. It is demonstrated that whilst Detached Eddy Simulation holds little advantage over ak-! SST model for predicting mean performance characteristics, significant advantages are shown when predicting wake length, as well as allowing the prediction of the magnitude of fluctuations. It is expected that, despite the higher computational expense, hybrid LES-RANS turbulence models such as Detached Eddy Simulation will be of interest to engineers designing arrays of tidal turbines, which are anticipated if tidal energy is to make a significant contribution to the world’s energy resources

    Global meteorological influences on the record UK rainfall of winter 2013-14

    Get PDF
    The UK experienced record average rainfall in winter 2013–14, leading to widespread and prolonged flooding. The immediate cause of this exceptional rainfall was a very strong and persistent cyclonic atmospheric circulation over the North East Atlantic Ocean. This was related to a very strong North Atlantic jet stream which resulted in numerous damaging wind storms. These exceptional meteorological conditions have led to renewed questions about whether anthropogenic climate change is noticeably influencing extreme weather. The regional weather pattern responsible for the extreme UK winter coincided with highly anomalous conditions across the globe. We assess the contributions from various possible remote forcing regions using sets of ocean–atmosphere model relaxation experiments, where winds and temperatures are constrained to be similar to those observed in winter 2013–14 within specified atmospheric domains. We find that influences from the tropics were likely to have played a significant role in the development of the unusual extra-tropical circulation, including a role for the tropical Atlantic sector. Additionally, a stronger and more stable stratospheric polar vortex, likely associated with a strong westerly phase of the stratospheric Quasi-Biennial Oscillation (QBO), appears to have contributed to the extreme conditions. While intrinsic climatic variability clearly has the largest effect on the generation of extremes, results from an analysis which segregates circulation-related and residual rainfall variability suggest that emerging climate change signals made a secondary contribution to extreme rainfall in winter 2013–14

    Rabies Management Implications Based on Raccoon Population Density Indexes

    Get PDF
    An estimate or index of target species density is important in determining oral rabies vaccination (ORV) bait densities to control and eliminate specific rabies variants. From 1997–2011, we indexed raccoon (Procyon lotor) densities 253 times based on cumulative captures on 163 sites from Maine to Alabama, USA, near ORV zones created to prevent raccoon rabies from spreading to new areas. We conducted indexing under a common cage trapping protocol near the time of annual ORV to aid in bait density decisions. Unique raccoons (n = 8,415) accounted for 68.0% of captures (n = 12,367). We recaptured raccoons 2,669 times. We applied Schnabel and Huggins mark‐recapture models on sites with ≥3 years of capture data and ≥25% recaptures as context for raccoon density indexes (RDIs). Simple linear relationships between RDIs and mark‐recapture estimates supported application of our 2 index. Raccoon density indexes ranged from 0.0–56.9 raccoons/km . For bait density decisions, we evaluated RDIs in the following 4 raccoon density groups, which were statistically different: (0.0–5.0 [n = 70], 5.1–15.0 [n = 129], 15.1–25.0 [n = 31], and \u3e25.0 raccoons/km2 [n = 23]). Mean RDI was positively associated with a higher percentage of developed land cover and a lower percentage of evergreen forest. Non‐target species composition (excluding recaptured raccoons) accounted for 32.0% of captures. Potential bait competitors accounted for 76.5% of non‐targets. The opossum (Didelphis virginiana) was the primary potential bait competitor from 27°N to 44°N latitude, north of which it was numerically replaced by the striped skunk (Mephitis mephitis). We selected the RDI approach over mark-recapture methods because of costs, geographic scope, staff availability, and the need for supplemental serologic samples. The 4 density groups provided adequate sensitivity to support bait density decisions for the current 2 bait density options. Future improvements to the method include providing random trapping locations to field personnel to prevent trap clustering and marking non‐targets to better characterize bait competitors

    Performance Characteristics of qPCR Assays Targeting Human- and Ruminant-Associated Bacteroidetes for Microbial Source Tracking across Sixteen Countries on Six Continents

    Get PDF
    Numerous quantitative PCR assays for microbial fecal source tracking (MST) have been developed and evaluated in recent years. Widespread application has been hindered by a lack of knowledge regarding the geographical stability and hence applicability of such methods beyond the regional level. This study assessed the performance of five previously reported quantitative PCR assays targeting human-, cattle-, or ruminant-associated Bacteroidetes populations on 280 human and animal fecal samples from 16 countries across six continents. The tested cattle-associated markers were shown to be ruminant-associated. The quantitative distributions of marker concentrations in target and nontarget samples proved to be essential for the assessment of assay performance and were used to establish a new metric for quantitative source-specificity. In general, this study demonstrates that stable target populations required for marker-based MST occur around the globe. Ruminant-associated marker concentrations were strongly correlated with total intestinal Bacteroidetes populations and with each other, indicating that the detected ruminant-associated populations seem to be part of the intestinal core microbiome of ruminants worldwide. Consequently tested ruminant-targeted assays appear to be suitable quantitative MST tools beyond the regional level while the targeted human-associated populations seem to be less prevalent and stable, suggesting potential for improvements in human-targeted methods

    Interspecific comparisons of C\u3csub\u3e3\u3c/sub\u3e turfgrass for tennis use: I. Wear tolerance and carrying capacity under actual match play

    Get PDF
    Previous studies in the evaluation of wear tolerance have been conducted using wear simulators. Research to investigate wear tolerance of C3 turfgrasses under actual playing conditions and their carrying capacity is limited. Three grass tennis courts (replicates) maintained as official size (single) courts were constructed. Eight species and cultivars were randomized within the three courts (blocks): (1) ‘Keeneland’ Kentucky bluegrass (KB, Poa pratensis L.), (2) ‘Rubix’ KB, (3) ‘Villa’ velvet bentgrass (VBG, Agrostis canina L.), (4) ‘Puritan’ colonial bentgrass (CL, Agrostis capillaris L.), (5) ‘007’ creeping bentgrass (CB, Agrostis stolonifera L.), (6) fine fescue (FF, Festuca spp.) mixture, (7) ‘Karma’ perennial ryegrass (PR, Lolium perenne L.), and (8) ‘Wicked’ PR. Injury at the baseline was measured by counting healthy grass on four dates in 2017 and 2019 using an intersect grid. Carrying capacity at the baseline was derived as hours of play to sustain 90, 80, 70, and 60% grass cover. After 6 wk of actual tennis play involving \u3e120 participating players in 2017 and 2019, KB and PR were superior to other C3 turfgrass for wear tolerance and carrying capacity. These two species exhibited four times the carrying capacity of FF species and nearly 60% more carrying capacity than bentgrass (BG) species. Species of BG afforded higher shoot density and better traction than KB and PR, with VBG exhibiting the best traction, and FF and PR exhibiting the poorest traction. In 2017, greater cell wall content increased wear tolerance and carrying capacity. Velvet bentgrass was as good as KB and PR in overall wear tolerance and carrying capacity under actual match play

    Influence of Microbial Biofilms on the Preservation of Primary Soft Tissue in Fossil and Extant Archosaurs

    Get PDF
    Background: Mineralized and permineralized bone is the most common form of fossilization in the vertebrate record. Preservation of gross soft tissues is extremely rare, but recent studies have suggested that primary soft tissues and biomolecules are more commonly preserved within preserved bones than had been presumed. Some of these claims have been challenged, with presentation of evidence suggesting that some of the structures are microbial artifacts, not primary soft tissues. The identification of biomolecules in fossil vertebrate extracts from a specimen of Brachylophosaurus canadensis has shown the interpretation of preserved organic remains as microbial biofilm to be highly unlikely. These discussions also propose a variety of potential mechanisms that would permit the preservation of soft-tissues in vertebrate fossils over geologic time. Methodology/Principal Findings: This study experimentally examines the role of microbial biofilms in soft-tissue preservation in vertebrate fossils by quantitatively establishing the growth and morphology of biofilms on extant archosaur bone. These results are microscopically and morphologically compared with soft-tissue extracts from vertebrate fossils from the Hell Creek Formation of southeastern Montana (Latest Maastrichtian) in order to investigate the potential role of microbial biofilms on the preservation of fossil bone and bound organic matter in a variety of taphonomic settings. Base
    corecore