1,039 research outputs found

    Graft dysfunction in simultaneous pancreas kidney transplantation (SPK): Results of concurrent kidney and pancreas allograft biopsies

    Get PDF
    Simultaneous pancreas and kidney transplants offer significant therapeutic advantages but present a diagnostic approach dilemma in the diagnosis of rejection. Because both organs are from the same donor, the kidney has been treated traditionally as the “sentinel” organ to biopsy, presumably representing the status of both allografts. Truly concurrent biopsy studies, however, are needed to confirm this hypothesis. We examined 101 concurrent biopsies from 70 patients with dysfunction in either or both organs. Results showed concurrent rejection in 23 of 57 (40%) of cases with rejection; 19 of 57 (33.5%) and 15 of 57 (26.5%) showed kidney or pancreas only rejection, respectively. The degree and type of rejection differed in the majority (13 of 23, 56.5%) of cases with concurrent rejection, with the pancreas more often showing higher rejection grade. Taking into account pancreas dysfunction, a positive kidney biopsy should correctly predict pancreas rejection in 86% of the instances. However, the lack of complete concordance between the 2 organs, the discrepancies in grade and type of rejection, and the tendency for higher rejection grades in concurrent or pancreas only rejections, all support the rationale for pancreas biopsies. The latter provide additional data on the overall status of the organ, as well as information on nonrejection-related pathologies.Fil: Uva, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; Argentina. Instituto de Nefrología de Buenos Aires; ArgentinaFil: Papadimitriou, J. C.. University of Maryland; Estados UnidosFil: Drachenberg, Cinthia B.. University of Maryland; Estados UnidosFil: Toniolo, María F.. Instituto de Nefrología de Buenos Aires; ArgentinaFil: Quevedo, Alejandra. Instituto de Nefrología de Buenos Aires; ArgentinaFil: Dotta, A. C.. Instituto de Nefrología de Buenos Aires; ArgentinaFil: Chuluyan, Hector Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Casadei, D. H.. Instituto de Nefrología de Buenos Aires; Argentin

    Isolation of Flow and Nonflow Correlations by Two- and Four-Particle Cumulant Measurements of Azimuthal Harmonics in sNN=\sqrt{s_{_{\rm NN}}} = 200 GeV Au+Au Collisions

    Get PDF
    A data-driven method was applied to measurements of Au+Au collisions at sNN=\sqrt{s_{_{\rm NN}}} = 200 GeV made with the STAR detector at RHIC to isolate pseudorapidity distance Δη\Delta\eta-dependent and Δη\Delta\eta-independent correlations by using two- and four-particle azimuthal cumulant measurements. We identified a component of the correlation that is Δη\Delta\eta-independent, which is likely dominated by anisotropic flow and flow fluctuations. It was also found to be independent of η\eta within the measured range of pseudorapidity η<1|\eta|<1. The relative flow fluctuation was found to be 34%±2%(stat.)±3%(sys.)34\% \pm 2\% (stat.) \pm 3\% (sys.) for particles of transverse momentum pTp_{T} less than 22 GeV/cc. The Δη\Delta\eta-dependent part may be attributed to nonflow correlations, and is found to be 5%±2%(sys.)5\% \pm 2\% (sys.) relative to the flow of the measured second harmonic cumulant at Δη>0.7|\Delta\eta| > 0.7

    Beam energy dependent two-pion interferometry and the freeze-out eccentricity of pions in heavy ion collisions at STAR

    Get PDF
    We present results of analyses of two-pion interferometry in Au+Au collisions at sNN\sqrt{s_{NN}} = 7.7, 11.5, 19.6, 27, 39, 62.4 and 200 GeV measured in the STAR detector as part of the RHIC Beam Energy Scan program. The extracted correlation lengths (HBT radii) are studied as a function of beam energy, azimuthal angle relative to the reaction plane, centrality, and transverse mass (mTm_{T}) of the particles. The azimuthal analysis allows extraction of the eccentricity of the entire fireball at kinetic freeze-out. The energy dependence of this observable is expected to be sensitive to changes in the equation of state. A new global fit method is studied as an alternate method to directly measure the parameters in the azimuthal analysis. The eccentricity shows a monotonic decrease with beam energy that is qualitatively consistent with the trend from all model predictions and quantitatively consistent with a hadronic transport model.Comment: 27 pages; 27 figure
    corecore