870 research outputs found
Statistical estimation of trailing edge noise from finite wall-mounted airfoils
The 2016 Joint Conference of The Australian Acoustical Society and The Acoustical Society of New Zealand.
Acoustics2016 - The Second Australasian Acoustical Societies ConferenceIt is important to be able to accurately model the flow and noise generated by finite wall-mounted airfoil flows because of the many engineering applications in which these flows occur. One method for predicting turbulent trailing edge noise is the Reynolds-averaged Navier-Stokes based statistical noise model (RSNM) of Doolan et al. (Proceedings of 20th International Congress on Acoustics, ICA 2010). The RSNM method has previously been used successfully on a range of two-dimensional geometry-flow cases. In this paper a new turbulent velocity cross-spectrum model and improved implementation are proposed to allow the RSNM method to be used to effectively and efficiently predict turbulent trailing edge noise from more complex three-dimensional cases. Reynolds-averaged Navier-Stokes (RANS) simulations of a series of wing-in-junction cases are used in combination with the developed acoustic model to predict the far-field noise and compared against experimental noise measurements.Jesse Coombs, Con Doolan, Anthony Zander, Danielle Moreau and Laura Brook
Dose ratio proton radiography using the proximal side of the Bragg peak
Purpose: In recent years there has been a movement towards single-detector proton radiography, due to its potential ease of implementation within the clinical environment. One such single-detector technique is the dose ratio method, in which the dose maps from two pristine Bragg peaks are recorded beyond the patient. To date, this has only been investigated on the distal side of the lower energy Bragg peak, due to the sharp fall-off. We investigate the limits and applicability of the dose ratio method on the proximal side of the lower energy Bragg peak, which has the potential to allow a much wider range of water-equivalent thicknesses (WET) to be imaged. Comparisons are made with the use of the distal side of the Bragg peak. Methods: Using the analytical approximation for the Bragg peak we generated theoretical dose ratio curves for a range of energy pairs, and then determined how an uncertainty in the dose ratio would translate to a spread in the WET estimate. By defining this spread as the accuracy one could achieve in the WET estimate, we were able to generate look-up graphs of the range on the proximal side of the Bragg peak that one could reliably use. These were dependent on the energy pair, noise level in the dose ratio image and the required accuracy in the WET. Using these look-up graphs we investigated the applicability of the technique for a range of patient treatment sites. We validated the theoretical approach with experimental measurements using a complementary metal oxide semiconductor active pixel sensor (CMOS APS), by imaging a small sapphire sphere in a high energy proton beam. Results: Provided the noise level in the dose ratio image was 1% or less, a larger spread of WETs could be imaged using the proximal side of the Bragg peak (max 5.31 cm) compared to the distal side (max 2.42 cm). In simulation it was found that, for a pediatric brain, it is possible to use the technique to image a region with a square field equivalent size of 7.6 cm2, for a required accuracy in the WET of 3 mm and a 1% noise level in the dose ratio image. The technique showed limited applicability for other patient sites. The CMOS APS demonstrated a good accuracy, with a root-mean-square-error of 1.6 mm WET. The noise in the measured images was found to be σ =1.2% (standard deviation) and theoretical predictions with a 1.96σ noise level showed good agreement with the measured errors. Conclusions: After validating the theoretical approach with measurements, we have shown that the use of the proximal side of the Bragg peak when performing dose ratio imaging is feasible, and allows for a wider dynamic range than when using the distal side. The dynamic range available increases as the demand on the accuracy of the WET decreases. The technique can only be applied to clinical sites with small maximum WETs such as for pediatric brains
Interactions and potential implications of Plasmodium falciparum-hookworm coinfection in different age groups in south-central Côte d'Ivoire
BACKGROUND: Given the widespread distribution of Plasmodium and helminth infections, and similarities of ecological requirements for disease transmission, coinfection is a common phenomenon in sub-Saharan Africa and elsewhere in the tropics. Interactions of Plasmodium falciparum and soil-transmitted helminths, including immunological responses and clinical outcomes of the host, need further scientific inquiry. Understanding the complex interactions between these parasitic infections is of public health relevance considering that control measures targeting malaria and helminthiases are going to scale.METHODOLOGY: A cross-sectional survey was carried out in April 2010 in infants, young school-aged children, and young non-pregnant women in south-central Côte d'Ivoire. Stool, urine, and blood samples were collected and subjected to standardized, quality-controlled methods. Soil-transmitted helminth infections were identified and quantified in stool. Finger-prick blood samples were used to determine Plasmodium spp. infection, parasitemia, and hemoglobin concentrations. Iron, vitamin A, riboflavin, and inflammation status were measured in venous blood samples.PRINCIPAL FINDINGS: Multivariate regression analysis revealed specific association between infection and demographic, socioeconomic, host inflammatory and nutritional factors. Non-pregnant women infected with P. falciparum had significantly lower odds of hookworm infection, whilst a significant positive association was found between both parasitic infections in 6- to 8-year-old children. Coinfected children had lower odds of anemia and iron deficiency than their counterparts infected with P. falciparum alone.CONCLUSIONS/SIGNIFICANCE: Our findings suggest that interaction between P. falciparum and light-intensity hookworm infections vary with age and, in school-aged children, may benefit the host through preventing iron deficiency anemia. This observation warrants additional investigation to elucidate the mechanisms and consequences of coinfections, as this information could have important implications when implementing integrated control measures against malaria and helminthiases
A numerical framework to investigate isotropic turbulent inflow interacting with an airfoil's leading edge
This paper presents a numerical framework to study the interaction of isotropic turbulence with airfoils. Specifically, the developed numerical framework is used to investigate the distortion of the turbulent structures interacting with an airfoil's leading edge. For turbulence modeling, Large Eddy Simulation (LES) is used. The isotropic turbulent inflow for the Computational Fluid Dynamics (CFD) simulations is synthetically generated using the turbulent digital filter method. The case studied with the numerical framework is a NACA 0012 airfoil with a chord-based Reynolds number of Rec=2×105 and an angle of attack of α=5°. The numerical simulation results are compared to high-speed particle image velocimetry (PIV) measurements performed for a NACA 0012 airfoil at the equivalent chord-based Reynolds number and turbulent inflow conditions. The CFD results of the numerical framework compare well with the experiments in terms of velocity spectra and RMS values upstream of the airfoil's leading edge. The spectra and correlations of the velocity field generated by the turbulent digital filter demonstrate its ability to generate isotropic turbulent inflow. Instantaneous velocity fields show that the airfoil suppresses large-scale turbulent structures of the incoming turbulent flow. The size of the incoming turbulent structures decreases as they approach the leading edge due to the presence of the airfoil. The pre-multiplied spectra of the different velocity components show that downstream of the airfoil's leading edge, the turbulent structures are stretched in the streamwise direction. The streamwise turbulent integral length scales and the velocity RMS values upstream of the airfoil's leading edge indicate that the velocity components most affected by distortion are the streamwise and wall-normal components
Assessment of humoral immune responses to blood-stage malaria antigens following ChAd63-MVA immunization, controlled human malaria infection and natural exposure.
The development of protective vaccines against many difficult infectious pathogens will necessitate the induction of effective antibody responses. Here we assess humoral immune responses against two antigens from the blood-stage merozoite of the Plasmodium falciparum human malaria parasite--MSP1 and AMA1. These antigens were delivered to healthy malaria-naïve adult volunteers in Phase Ia clinical trials using recombinant replication-deficient viral vectors--ChAd63 to prime the immune response and MVA to boost. In subsequent Phase IIa clinical trials, immunized volunteers underwent controlled human malaria infection (CHMI) with P. falciparum to assess vaccine efficacy, whereby all but one volunteer developed low-density blood-stage parasitemia. Here we assess serum antibody responses against both the MSP1 and AMA1 antigens following i) ChAd63-MVA immunization, ii) immunization and CHMI, and iii) primary malaria exposure in the context of CHMI in unimmunized control volunteers. Responses were also assessed in a cohort of naturally-immune Kenyan adults to provide comparison with those induced by a lifetime of natural malaria exposure. Serum antibody responses against MSP1 and AMA1 were characterized in terms of i) total IgG responses before and after CHMI, ii) responses to allelic variants of MSP1 and AMA1, iii) functional growth inhibitory activity (GIA), iv) IgG avidity, and v) isotype responses (IgG1-4, IgA and IgM). These data provide the first in-depth assessment of the quality of adenovirus-MVA vaccine-induced antibody responses in humans, along with assessment of how these responses are modulated by subsequent low-density parasite exposure. Notable differences were observed in qualitative aspects of the human antibody responses against these malaria antigens depending on the means of their induction and/or exposure of the host to the malaria parasite. Given the continued clinical development of viral vectored vaccines for malaria and a range of other diseases targets, these data should help to guide further immuno-monitoring studies of vaccine-induced human antibody responses
Increased immune response elicited by DNA vaccination with a synthetic gp120 sequence with optimized codon usage
DNA vaccination elicits humoral and cellular immune responses and has been shown to confer protection against several viral, bacterial, and parasitic pathogens. Here we report that optimized codon usage of an injected DNA sequence considerably increases both humoral and cellular immune responses. We recently generated a synthetic human immunodeficiency virus type 1 gp120 sequence in which most wild-type codons were replaced with codons from highly expressed human genes (syngp120). In vitro expression of syngp120 is considerably increased in comparison to that of the respective wild-type sequence. In BALB/c mice, DNA immunization with syngp120 resulted in significantly increased antibody titers and cytotoxic T-lymphocyte reactivity, suggesting a direct correlation between expression levels and the immune response. Moreover, syngp120 is characterized by rev-independent expression and a low risk of recombination with viral sequences. Thus, synthetic genes with optimized codon usage represent a novel strategy to increase the efficacy and safety of DNA vaccination
Comparison of Leading Edge Noise Measurements of an Airfoil in Two Wind Tunnel Facilities
This work compares the measured radiated leading edge noise from a NACA 0012 airfoil with a 150 mm chord immersed in isotropic turbulence in two different anechoic wind tunnels. It investigates the cross-tunnel repeatability of leading edge noise measurements in a near-isotropic turbulent flow. Both wind tunnels are open jet anechoic wind tunnel types, with one located in UNSW Sydney, Australia and the other at the University of Poitiers, France. The experimental setups in the two facilities are designed to generate comparable mean flow and turbulence characteristics by ensuring identical turbulence grids in both facilities and equal distances between the grids and the airfoil in both facilities. The airfoil is subjected to two different flow speeds: 20 and 30 m/s corresponding to chord-based Reynolds numbers of Rec = 2·105 and 3·105. The airfoil’s geometric angle of attack is kept at 0◦. Two near-isotropic turbulence cases with streamwise turbulence intensities of 5.1 % and 4.8 % (UNSW) and 4.1 % and 3.5 % (Poitiers) are generated by two passive turbulence grids, respectively. Flow measurements are taken using Stereo Particle Image Velocimetry & hot-wire anemometry at UNSW and hot-wire anemometry only at Poitiers. Beamforming arrays are used to localise and quantify the radiated noise from the leading edge of the airfoil in both facilities. A Source Region Integration method is used to extract the leading edge power spectral density. These power spectral densities obtained in the two wind tunnel experiments are then compared between the facilities and between all turbulence- and mean flow speed cases. The noise comparison results reveal that the grids’ self-noise levels have the potential to significantly corrupt the beamforming results of the leading-edge noise across the entire frequency range due to multiple individual factors which are discussed in the present work. The comparison of the turbulence characteristics yields similar integral length scales but identified minor differences in the turbulence intensities. This highlights how sensitive the turbulence characteristics can be to slight differences between the two open jet wind tunnel facilities. Suggestions are given to enable accurate and reproducible leading edge noise measurements in open jet wind tunnels
P. falciparum and P. vivax Epitope-Focused VLPs Elicit Sterile Immunity to Blood Stage Infections
In order to design P. falciparum preerythrocytic vaccine candidates, a library of circumsporozoite (CS) T and B cell epitopes displayed on the woodchuck hepatitis virus core antigen (WHcAg) VLP platform was produced. To test the protective efficacy of the WHcAg-CS VLPs, hybrid CS P. berghei/P. falciparum (Pb/Pf) sporozoites were used to challenge immunized mice. VLPs carrying 1 or 2 different CS repeat B cell epitopes and 3 VLPs carrying different CS non-repeat B cell epitopes elicited high levels of anti-insert antibodies (Abs). Whereas, VLPs carrying CS repeat B cell epitopes conferred 98% protection of the liver against a 10,000 Pb/Pf sporozoite challenge, VLPs carrying the CS non-repeat B cell eptiopes were minimally-to-non-protective. One-to-three CS-specific CD4/CD8 T cell sites were also fused to VLPs, which primed CS-specific as well as WHcAg-specific T cells. However, a VLP carrying only the 3 T cell domains failed to protect against a sporozoite challenge, indicating a requirement for anti-CS repeat Abs. A VLP carrying 2 CS repeat B cell epitopes and 3 CS T cell sites in alum adjuvant elicited high titer anti-CS Abs (endpoint dilution titer \u3e1x106) and provided 80–100% protection against blood stage malaria. Using a similar strategy, VLPs were constructed carrying P. vivax CS repeat B cell epitopes (WHc-Pv-78), which elicited high levels of anti-CS Abs and conferred 99% protection of the liver against a 10,000 Pb/Pv sporozoite challenge and elicited sterile immunity to blood stage infection. These results indicate that immunization with epitope-focused VLPs carrying selected B and T cell epitopes from the P.falciparum and P. vivax CS proteins can elicit sterile immunity against blood stage malaria. Hybrid WHcAg-CS VLPs could provide the basis for a bivalent P. falciparum/P. vivax malaria vaccine
A Review of Return to Play Issues and Sports-Related Concussion
Mild traumatic brain injury in sports has become a significant public health concern which has not only received the general public’s attention through multiple news media stories involving athletic concussions but has also resulted in local, state, and national legislative efforts to improve recogni-tion and management. The purpose of this article is to review the current literature for return to play (RTP) guidelines. State, regional, national, and professional legislation on sport-related concussion RTP management issues will be reviewed. This article will be helpful in developing a generalized systematic approach to concussion management and highlight specific RTP guidelines. The article will also touch upon specific contraindications to RTP, the role of neuropsychological testing in RTP, and other considerations and complications that affect an athlete’s ability to return to competition. Finally, considerations for terminating an athlete’s competitive season or ending a career after sus-taining a concussion resulting in prolonged and protracted symptomatology or repeated concussions will be reviewed. PubMed and Google were searched using the key terms mentioned below. In ad-dition, the author’s library of concussion-related articles was reviewed for the relevant literature
A systematic review of patient reported factors associated with uptake and completion of cardiovascular lifestyle behaviour change
Background: Healthy lifestyles are an important facet of cardiovascular risk management. Unfortunately many individuals fail to engage with lifestyle change programmes. There are many factors that patients report as influencing their decisions about initiating lifestyle change. This is challenging for health care professionals who may lack the skills and time to address a broad range of barriers to lifestyle behaviour. Guidance on which factors to focus on during lifestyle consultations may assist healthcare professionals to hone their skills and knowledge leading to more productive patient interactions with ultimately better uptake of lifestyle behaviour change support. The aim of our study was to clarify which influences reported by patients predict uptake and completion of formal lifestyle change programmes. Methods: A systematic narrative review of quantitative observational studies reporting factors (influences) associated with uptake and completion of lifestyle behaviour change programmes. Quantitative observational studies involving patients at high risk of cardiovascular events were identified through electronic searching and screened against pre-defined selection criteria. Factors were extracted and organised into an existing qualitative framework. Results: 374 factors were extracted from 32 studies. Factors most consistently associated with uptake of lifestyle change related to support from family and friends, transport and other costs, and beliefs about the causes of illness and lifestyle change. Depression and anxiety also appear to influence uptake as well as completion. Many factors show inconsistent patterns with respect to uptake and completion of lifestyle change programmes. Conclusion: There are a small number of factors that consistently appear to influence uptake and completion of cardiovascular lifestyle behaviour change. These factors could be considered during patient consultations to promote a tailored approach to decision making about the most suitable type and level lifestyle behaviour change support
- …
