279 research outputs found
Random Unitaries Give Quantum Expanders
We show that randomly choosing the matrices in a completely positive map from
the unitary group gives a quantum expander. We consider Hermitian and
non-Hermitian cases, and we provide asymptotically tight bounds in the
Hermitian case on the typical value of the second largest eigenvalue. The key
idea is the use of Schwinger-Dyson equations from lattice gauge theory to
efficiently compute averages over the unitary group.Comment: 14 pages, 1 figur
Approximately coloring graphs without long induced paths
It is an open problem whether the 3-coloring problem can be solved in
polynomial time in the class of graphs that do not contain an induced path on
vertices, for fixed . We propose an algorithm that, given a 3-colorable
graph without an induced path on vertices, computes a coloring with
many colors. If the input graph is
triangle-free, we only need many
colors. The running time of our algorithm is if the input
graph has vertices and edges
On Coloring Resilient Graphs
We introduce a new notion of resilience for constraint satisfaction problems,
with the goal of more precisely determining the boundary between NP-hardness
and the existence of efficient algorithms for resilient instances. In
particular, we study -resiliently -colorable graphs, which are those
-colorable graphs that remain -colorable even after the addition of any
new edges. We prove lower bounds on the NP-hardness of coloring resiliently
colorable graphs, and provide an algorithm that colors sufficiently resilient
graphs. We also analyze the corresponding notion of resilience for -SAT.
This notion of resilience suggests an array of open questions for graph
coloring and other combinatorial problems.Comment: Appearing in MFCS 201
Peer-to-Peer Secure Multi-Party Numerical Computation Facing Malicious Adversaries
We propose an efficient framework for enabling secure multi-party numerical
computations in a Peer-to-Peer network. This problem arises in a range of
applications such as collaborative filtering, distributed computation of trust
and reputation, monitoring and other tasks, where the computing nodes is
expected to preserve the privacy of their inputs while performing a joint
computation of a certain function. Although there is a rich literature in the
field of distributed systems security concerning secure multi-party
computation, in practice it is hard to deploy those methods in very large scale
Peer-to-Peer networks. In this work, we try to bridge the gap between
theoretical algorithms in the security domain, and a practical Peer-to-Peer
deployment.
We consider two security models. The first is the semi-honest model where
peers correctly follow the protocol, but try to reveal private information. We
provide three possible schemes for secure multi-party numerical computation for
this model and identify a single light-weight scheme which outperforms the
others. Using extensive simulation results over real Internet topologies, we
demonstrate that our scheme is scalable to very large networks, with up to
millions of nodes. The second model we consider is the malicious peers model,
where peers can behave arbitrarily, deliberately trying to affect the results
of the computation as well as compromising the privacy of other peers. For this
model we provide a fourth scheme to defend the execution of the computation
against the malicious peers. The proposed scheme has a higher complexity
relative to the semi-honest model. Overall, we provide the Peer-to-Peer network
designer a set of tools to choose from, based on the desired level of security.Comment: Submitted to Peer-to-Peer Networking and Applications Journal (PPNA)
200
KLEIN: A New Family of Lightweight Block Ciphers
Resource-efficient cryptographic primitives become fundamental for realizing both security and efficiency in embedded systems like RFID tags and sensor nodes. Among those primitives, lightweight block cipher plays a major role as a building block for security protocols. In this paper, we describe a new family of lightweight block ciphers named KLEIN, which is designed for resource-constrained devices such as wireless sensors and RFID tags. Compared to the related proposals, KLEIN has advantage in the software performance on legacy sensor platforms, while in the same time its hardware implementation can also be compact
Testing Consumer Rationality using Perfect Graphs and Oriented Discs
Given a consumer data-set, the axioms of revealed preference proffer a binary
test for rational behaviour. A natural (non-binary) measure of the degree of
rationality exhibited by the consumer is the minimum number of data points
whose removal induces a rationalisable data-set.We study the computational
complexity of the resultant consumer rationality problem in this paper. This
problem is, in the worst case, equivalent (in terms of approximation) to the
directed feedback vertex set problem. Our main result is to obtain an exact
threshold on the number of commodities that separates easy cases and hard
cases. Specifically, for two-commodity markets the consumer rationality problem
is polynomial time solvable; we prove this via a reduction to the vertex cover
problem on perfect graphs. For three-commodity markets, however, the problem is
NP-complete; we prove thisusing a reduction from planar 3-SAT that is based
upon oriented-disc drawings
Electromagnetic Excitations and Responses in Nuclei from First Principles
We discuss the role of clustering on monopole, dipole, and quadrupole
excitations in nuclei in the framework of the ab initio symmetry-adapted
no-core shell model (SA-NCSM). The SA-NCSM starts from nucleon-nucleon
potentials and, by exploring symmetries known to dominate the nuclear dynamics,
can reach nuclei up through the calcium region by accommodating ultra-large
model spaces critical to descriptions of clustering and collectivity. The
results are based on calculations of electromagnetic sum rules and discretized
responses using the Lanczos algorithm, that can be used to determine response
functions, and for 4He are benchmarked against exact solutions of the
hyperspherical harmonics method. In particular, we focus on He, Be, and O
isotopes, including giant resonances and monopole sum rules.Comment: 6 pages, 4 figures, Proceedings of the Fourth International Workshop
on State of the Art in Nuclear Cluster Physics, Galveston, TX, USA, May
13-18, 201
Electromagnetic Excitations and Responses in Nuclei from First Principles
We discuss the role of clustering on monopole, dipole, and quadrupole
excitations in nuclei in the framework of the ab initio symmetry-adapted
no-core shell model (SA-NCSM). The SA-NCSM starts from nucleon-nucleon
potentials and, by exploring symmetries known to dominate the nuclear dynamics,
can reach nuclei up through the calcium region by accommodating ultra-large
model spaces critical to descriptions of clustering and collectivity. The
results are based on calculations of electromagnetic sum rules and discretized
responses using the Lanczos algorithm, that can be used to determine response
functions, and for 4He are benchmarked against exact solutions of the
hyperspherical harmonics method. In particular, we focus on He, Be, and O
isotopes, including giant resonances and monopole sum rules.Comment: 6 pages, 4 figures, Proceedings of the Fourth International Workshop
on State of the Art in Nuclear Cluster Physics, Galveston, TX, USA, May
13-18, 201
Genetic Determinants of Phosphate Response in Drosophila
Phosphate is required for many important cellular processes and having too little phosphate or too much can cause disease and reduce life span in humans. However, the mechanisms underlying homeostatic control of extracellular phosphate levels and cellular effects of phosphate are poorly understood. Here, we establish Drosophila melanogaster as a model system for the study of phosphate effects. We found that Drosophila larval development depends on the availability of phosphate in the medium. Conversely, life span is reduced when adult flies are cultured on high phosphate medium or when hemolymph phosphate is increased in flies with impaired Malpighian tubules. In addition, RNAi-mediated inhibition of MAPK-signaling by knockdown of Ras85D, phl/D-Raf or Dsor1/MEK affects larval development, adult life span and hemolymph phosphate, suggesting that some in vivo effects involve activation of this signaling pathway by phosphate. To identify novel genetic determinants of phosphate responses, we used Drosophila hemocyte-like cultured cells (S2R+) to perform a genome-wide RNAi screen using MAPK activation as the readout. We identified a number of candidate genes potentially important for the cellular response to phosphate. Evaluation of 51 genes in live flies revealed some that affect larval development, adult life span and hemolymph phosphate levels
- …
