1,013 research outputs found

    Ultracold fermions in a one-dimensional bipartite optical lattice: metal-insulator transitions driven by shaking

    Full text link
    We describe the behavior of a system of fermionic atoms loaded in a bipartite one-dimensional optical lattice that is under the action of an external time-periodic driving force. By using Floquet theory, an effective model with renormalized hopping coefficients is derived. The insulating behavior characterizing the system at half-filling in the absence of driving is dynamically suppressed and for particular values of the driving parameter the system becomes either a standard metal or an unconventional metal with four Fermi points. We use the bosonization technique to investigate the effect of on-site Hubbard interactions on the four Fermi-point metal-insulator phase transition. Attractive interactions are expected to enlarge the regime of parameters where the unconventional metallic phase arises, whereas repulsive interactions reduce it. This metallic phase is known to be a Luther-Emery liquid (spin gapped metal) for both, repulsive and attractive interactions, contrarily to the usual Hubbard model which exhibits a Mott insulator phase for repulsive interactions. Ultracold fermions in driven one-dimensional bipartite optical lattices provide an interesting platform for the realization of this long studied four Fermi-point unconventional metal.Comment: 11 pages, 6 figure

    A quantum mechanical insight into SN2 reactions: Semiclassical initial value representation calculations of vibrational features of the Cl^---CH3_3Cl pre-reaction complex with the VENUS suite of codes

    Full text link
    The role of vibrational excitation of reactants in driving reactions involving polyatomic species has been often studied by means of classical or quasi-classical trajectory simulations. We propose a different approach based on investigation of vibrational features of the Cl^---CH3_3Cl pre-reaction complex for the Cl^- + CH3_3Cl SN2_2 reaction. We present vibrational power spectra and frequency estimates for the title pre-reaction complex calculated at the level of classical, semiclassical, and second-order vibrational perturbation theory on a pre-existing analytical potential energy surface. The main goals of the paper are the study of anharmonic effects and understanding of vibrational couplings that permit energy transfer between the collisional kinetic energy and the internal vibrations of the reactants. We provide both classical and quantum pictures of intermode couplings and show that the SN2 mechanism is favored by the coupling of a C--Cl bend involving the Cl^- projectile with the CH3_3 rocking motion of the target molecule. We also illustrate how the routines needed for semiclassical vibrational spectroscopy simulations can be interfaced in a user-friendly way to pre-existing molecular dynamics software. In particular, we present an implementation of semiclassical spectroscopy into the VENUS suite of codes, thus providing a useful computational tool for users who are not experts of semiclassical dynamics

    On the evolution of decoys in plant immune systems

    Full text link
    The Guard-Guardee model for plant immunity describes how resistance proteins (guards) in host cells monitor host target proteins (guardees) that are manipulated by pathogen effector proteins. A recently suggested extension of this model includes decoys, which are duplicated copies of guardee proteins, and which have the sole function to attract the effector and, when modified by the effector, trigger the plant immune response. Here we present a proof-of-principle model for the functioning of decoys in plant immunity, quantitatively developing this experimentally-derived concept. Our model links the basic cellular chemistry to the outcomes of pathogen infection and resulting fitness costs for the host. In particular, the model allows identification of conditions under which it is optimal for decoys to act as triggers for the plant immune response, and of conditions under which it is optimal for decoys to act as sinks that bind the pathogen effectors but do not trigger an immune response.Comment: 15 pages, 6 figure

    Spectrally resolved observations of atmospheric emitted radiance in the H2O rotation band

    Get PDF
    This paper presents the project Earth Cooling by Water Vapor Radiation, an observational programme, which aims at developing a database of spectrally resolved far infrared observations, in atmospheric dry conditions, in order to validate radiative transfer models and test the quality of water vapor continuum and line parameters. The project provides the very first set of far-infrared spectral downwelling radiance measurements, in dry atmospheric conditions, which are complemented with Raman Lidar-derived temperature and water vapor profiles

    Interleukin-9 over-expression and T helper 9 polarization in systemic sclerosis patients.

    Get PDF
    T helper 9 (Th9) cells and interleukin (IL)-9 are involved in the pathogenesis of several autoimmune diseases. The exact role of IL-9 and Th9 cells in patients with systemic sclerosis (SSc) have not yet been studied adequately. IL-9, IL-9R, transcription factor PU.1 (PU.1), IL-4, thymic stromal lymphopoietin (TSLP) and transforming growth factor (TGF)-\u3b2 expression were assessed in skin and kidney biopsies of SSc patients and healthy controls (HC) by immunohistochemistry (IHC). The cellular source of IL-9 was also analysed by confocal microscopy analysis. Peripheral IL-9-producing cells were also studied by flow cytometry. The functional relevance of IL-9 increased expression in SSc was also investigated. Our results demonstrated a strong expression of IL-9, IL-9R, IL-4, TSLP and TGF-\u3b2 in skin tissues of patients with both limited and diffuse SSc. IL-9 expression was observed mainly in the context of skin infiltrating mononuclear cells and keratinizing squamous epithelium. IL-9 over-expression was also observed in renal biopsies of patients with SSc. IL-9 producing cells in the skin were identified as Th9 cells. Similarly, Th9 cells were expanded and were the major source of IL-9 among SSc peripheral blood mononuclear cells (PBMC), their percentage being correlated directly with the modified Rodnan skin score. Infiltrating mononuclear cells, mast cells and neutrophils expressed IL-9R. In in-vitro studies stimulation with rIL-9 significantly induced NET (neutrophil extracellular traps) release by dying cells (NETosis) in neutrophils, expansion of mast cells and increase of anti-systemic scleroderma 70 (Scl70) production by B cells. Our findings suggest that Th9 cells and IL-9 could be implicated in the pathogenesis of SSc

    Phase transitions in the Potts spin glass model

    Get PDF
    We have studied the Potts spin glass with 2-state Ising spins and s-state Potts variables using a cluster Monte Carlo dynamics. The model recovers the +- J Ising spin glass (SG) for s=1 and exhibits for all s a SG transition at T_{SG}(s) and a percolation transition at higher temperature T_p(s). We have shown that for all values of s1s\neq 1 at T_p(s) there is a thermodynamical transition in the universality class of a ferromagnetic s-state Potts model. The efficiency of the cluster dynamics is compared with that of standard spin flip dynamics.Comment: 8 pages, Latex, with 8 EPS fig
    corecore