27 research outputs found
Thalamic inputs to dorsomedial striatum are involved in inhibitory control: evidence from the five-choice serial reaction time task in rats
Rationale
Corticostriatal circuits are widely implicated in the top-down control of attention including inhibitory control and behavioural flexibility. However, recent neurophysiological evidence also suggests a role for thalamic inputs to striatum in behaviours related to salient, reward-paired cues.
Objectives
Here, we used designer receptors exclusively activated by designer drugs (DREADDs) to investigate the role of parafascicular (Pf) thalamic inputs to the dorsomedial striatum (DMS) using the five-choice serial reaction time task (5CSRTT) in rats.
Methods
The 5CSRTT requires sustained attention in order to detect spatially and temporally distributed visual cues and provides measures of inhibitory control related to impulsivity (premature responses) and compulsivity (perseverative responses). Rats underwent bilateral Pf injections of the DREADD vector, AAV2-CaMKIIa-HA-hM4D(Gi)-IRES-mCitrine. The DREADD agonist, clozapine N-oxide (CNO; 1 μl bilateral; 3 μM) or vehicle, was injected into DMS 1 h before behavioural testing. Task parameters were manipulated to increase attention load or reduce stimulus predictability respectively.
Results
We found that inhibition of the Pf-DMS projection significantly increased perseverative responses when stimulus predictability was reduced but had no effect on premature responses or response accuracy, even under increased attentional load. Control experiments showed no effects on locomotor activity in an open field.
Conclusions
These results complement previous lesion work in which the DMS and orbitofrontal cortex were similarly implicated in perseverative responses and suggest a specific role for thalamostriatal inputs in inhibitory control
Genetic inhibition of neurotransmission reveals role of glutamatergic input to dopamine neurons in high-effort behavior
Midbrain dopamine neurons are crucial for many behavioral and cognitive functions. As the major excitatory input, glutamatergic afferents are important for control of the activity and plasticity of dopamine neurons. However, the role of glutamatergic input as a whole onto dopamine neurons remains unclear. Here we developed a mouse line in which glutamatergic inputs onto dopamine neurons are specifically impaired, and utilized this genetic model to directly test the role of glutamatergic inputs in dopamine-related functions. We found that while motor coordination and reward learning were largely unchanged, these animals showed prominent deficits in effort-related behavioral tasks. These results provide genetic evidence that glutamatergic transmission onto dopaminergic neurons underlies incentive motivation, a willingness to exert high levels of effort to obtain reinforcers, and have important implications for understanding the normal function of the midbrain dopamine system.Fil: Hutchison, M. A.. National Institutes of Health; Estados UnidosFil: Gu, X.. National Institutes of Health; Estados UnidosFil: Adrover, Martín Federico. National Institutes of Health; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Lee, M. R.. National Institutes of Health; Estados UnidosFil: Hnasko, T. S.. University of California at San Diego; Estados UnidosFil: Alvarez, V. A.. National Institutes of Health; Estados UnidosFil: Lu, W.. National Institutes of Health; Estados Unido
New Developments in Cholinergic Imaging in Alzheimer and Lewy Body Disorders
© 2020, This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply. Purpose of Review: This paper aims to review novel trends in cholinergic neuroimaging in Alzheimer and Lewy body parkinsonian disorders. Recent Findings: The spectrum of cholinergic imaging is expanding with the availability of spatially more precise radioligands that allow assessment of previously less recognized subcortical and cortical structures with more dense cholinergic innervation. In addition, advances in MRI techniques now allow quantitative structural or functional assessment of both the cholinergic forebrain and the pedunculopontine nucleus, which may serve as non-invasive prognostic predictors. Multimodal imaging approaches, such as PET-MRI or multiligand PET, offer new insights into the dynamic and interactive roles of the cholinergic system at both local and larger-scale neural network levels. Summary: Our understanding of the heterogeneous roles of the cholinergic system in age-related diseases is evolving. Multimodal imaging approaches that provide complimentary views of the cholinergic system will be necessary to shed light on the impact of cholinergic degeneration on regional and large-scale neural networks that underpin clinical symptom manifestation in neurodegeneration
Targeted activation of cholinergic interneurons accounts for the modulation of dopamine by striatal nicotinic receptors
Striatal dopamine (DA) is a major player in action selection and reinforcement. DA release is under strong local control by striatal ACh acting at axonal nicotinic ACh receptors (nAChRs) on DA axons. Striatal nAChRs have been shown to control how DA is released in response to ascending activity from DA neurons, and they also directly drive DA release following synchronized activity in a small local cholinergic network. The source of striatal ACh has been thought to arise solely from intrinsic cholinergic interneurons (ChIs), but recent findings have identified a source of cholinergic inputs to striatum from brainstem nuclei, the pedunculopontine nucleus (PPN) and laterodorsal tegmentum (LDT). Here, we used targeted optogenetic activation alongside DA detection with fast-scan cyclic voltammetry to test whether ChIs alone and/or brainstem afferents to the striatum can account for how ACh drives and modulates DA release in rat striatum. We demonstrate that targeted transient light activation of rat striatal ChIs drives striatal DA release, corroborating and extending previous observations in mouse to rat. However, the same light stimulation targeted to cholinergic brainstem afferents did not drive DA release, and nor did it modulate DA release activated subsequently by electrical stimulation, whereas targeted activation of ChIs did so. We were unable to obtain any evidence for DA modulation by PPN/LDT stimulation. By contrast, we could readily identify that striatal ChIs alone are sufficient to provide a source of ACh that powerfully regulates DA via nAChRs
Extrinsic Sources of Cholinergic Innervation of the Striatal Complex: A Whole-Brain Mapping Analysis
Acetylcholine in the striatal complex plays an important role in normal behavior and is affected in a number of neurological disorders. Although early studies suggested that acetylcholine in the striatum (STR) is derived almost exclusively from cholinergic interneurons (CIN), recent axonal mapping studies using conditional anterograde tracing have revealed the existence of a prominent direct cholinergic pathway from the pedunculopontine and laterodorsal tegmental nuclei to the dorsal striatum and nucleus accumbens. The identification of the importance of this pathway is essential for creating a complete model of cholinergic modulation in the striatum, and it opens the question as to whether other populations of cholinergic neurons may also contribute to such modulation. Here, using novel viral tracing technologies based on phenotype-specific fluorescent reporter expression in combination with retrograde tracing, we aimed to define other sources of cholinergic innervation of the striatum. Systematic mapping of the projections of all cholinergic structures in the brain (Ch1 to Ch8) by means of conditional tracing of cholinergic axons, revealed that the only extrinsic source of cholinergic innervation arises in the brainstem pedunculopontine and laterodorsal tegmental nuclei. Our results thus place the pedunculopontine and laterodorsal nuclei in a key and exclusive position to provide extrinsic cholinergic modulation of the activity of the striatal systems
Role of laterodorsal tegmentum projections to nucleus accumbens in reward-related behaviors
The laterodorsal tegmentum (LDT) is associated with reward considering that it modulates VTA neuronal activity, but recent anatomical evidence shows that the LDT also directly projects to nucleus accumbens (NAc). We show that the majority of LDT-NAc inputs are cholinergic, but there is also GABAergic and glutamatergic innervation; activation of LDT induces a predominantly excitatory response in the NAc. Non-selective optogenetic activation of LDT-NAc projections in rats enhances motivational drive and shifts preference to an otherwise equal reward; whereas inhibition of these projections induces the opposite. Activation of these projections also induces robust place preference. In mice, specific activation of LDT-NAc cholinergic inputs (but not glutamatergic or GABAergic) is sufficient to shift preference, increase motivation, and drive positive reinforcement in different behavioral paradigms. These results provide evidence that LDT-NAc projections play an important role in motivated behaviors and positive reinforcement, and that distinct neuronal populations differentially contribute for these behaviors.BIAL Foundation Grant (PT/FB/BL-2016-030). Part of the work was supported by FCT project PTDC/MED-NEU/29071/2017. This project is in the scope of the project NORTE-01-0145-FEDER-000013, supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER). Part of this work has also been funded by FEDER funds, through the Competitiveness Factors Operational Programme (COMPETE), and by National funds, through the Foundation for Science and Technology (FCT), under the scope of the project POCI-01-0145-FEDER-00703
Cholinergic midbrain afferents modulate striatal circuits and shape encoding of action strategies
Assimilation of novel strategies into a consolidated action repertoire is a crucial function for
behavioral adaptation and cognitive flexibility. Acetylcholine in the striatum plays a pivotal
role in such adaptation, and its release has been causally associated with the activity of
cholinergic interneurons. Here we show that the midbrain, a previously unknown source of
acetylcholine in the striatum, is a major contributor to cholinergic transmission in the striatal
complex. Neurons of the pedunculopontine and laterodorsal tegmental nuclei synapse with
striatal cholinergic interneurons and give rise to excitatory responses. Furthermore, they
produce uniform inhibition of spiny projection neurons. Inhibition of acetylcholine release
from midbrain terminals in the striatum impairs the association of contingencies and the
formation of habits in an instrumental task, and mimics the effects observed following
inhibition of acetylcholine release from striatal cholinergic interneurons. These results suggest the existence of two hierarchically-organized modes of cholinergic transmission in the
striatum, where cholinergic interneurons are modulated by cholinergic neurons of the
midbrain