2,238 research outputs found

    Quantum characterization of bipartite Gaussian states

    Full text link
    Gaussian bipartite states are basic tools for the realization of quantum information protocols with continuous variables. Their complete characterization is obtained by the reconstruction of the corresponding covariance matrix. Here we describe in details and experimentally demonstrate a robust and reliable method to fully characterize bipartite optical Gaussian states by means of a single homodyne detector. We have successfully applied our method to the bipartite states generated by a sub-threshold type-II optical parametric oscillator which produces a pair of thermal cross-polarized entangled CW frequency degenerate beams. The method provide a reliable reconstruction of the covariance matrix and allows to retrieve all the physical information about the state under investigation. These includes observable quantities, as energy and squeezing, as well as non observable ones as purity, entropy and entanglement. Our procedure also includes advanced tests for Gaussianity of the state and, overall, represents a powerful tool to study bipartite Gaussian state from the generation stage to the detection one

    Supersymmetric Randall-Sundrum Scenario

    Get PDF
    We present the supersymmetric version of the minimal Randall-Sundrum model with two opposite tension branes.Comment: Latex, 9 pages. Published versio

    More on integrable structures of superstrings in AdS(4) x CP(3) and AdS(2) x S(2) x T(6) superbackgrounds

    Get PDF
    In this paper we continue the study, initiated in arXiv:1009.3498 and arXiv:1104.1793, of the classical integrability of Green-Schwarz superstrings in AdS(4) x CP(3) and AdS(2) x S(2) x T(6) superbackgrounds whose spectrum contains non-supercoset worldsheet degrees of freedom corresponding to broken supersymmetries in the bulk. We derive an explicit expression, to all orders in the coset fermions and to second order in the non-coset fermions, which extends the supercoset Lax connection in these backgrounds with terms depending on the non-coset fermions. An important property of the obtained form of the Lax connection is that it is invariant under Z_4-transformations of the superisometry generators and the spectral parameter. This demonstrates that the contribution of the non-coset fermions does not spoil the Z_4-symmetry of the super-coset Lax connection which is of crucial importance for the application of Bethe-ansatz techniques. The expressions describing the AdS(4) x CP(3) and AdS(2) x S(2) x T(6) superstring sigma--models and their Lax connections have a very similar form. This is because their amount of target-space supersymmetries complement each other to 32=24+8, the maximal number of 10d type II supersymmetries. As a byproduct, this similarity has allowed us to obtain the form of the geometry of the complete type IIA AdS(2) x S(2) x T(6) superspace to all orders in the coset fermions and to the second order in the non-coset ones.Comment: 28 pages; v2: References adde

    Full characterization of Gaussian bipartite entangled states by a single homodyne detector

    Full text link
    We present the full experimental reconstruction of Gaussian entangled states generated by a type--II optical parametric oscillator (OPO) below threshold. Our scheme provides the entire covariance matrix using a single homodyne detector and allows for the complete characterization of bipartite Gaussian states, including the evaluation of purity, entanglement and nonclassical photon correlations, without a priori assumptions on the state under investigation. Our results show that single homodyne schemes are convenient and robust setups for the full characterization of OPO signals and represent a tool for quantum technology based on continuous variable entanglement.Comment: 4 pages, 3 figures, slightly longer version of published PR

    Characterization of bipartite states using a single homodyne detector

    Full text link
    We suggest a scheme to reconstruct the covariance matrix of a two-mode state using a single homodyne detector plus a polarizing beam splitter and a polarization rotator. It can be used to fully characterize bipartite Gaussian states and to extract relevant informations on generic states.Comment: 7 pages, 1 figur

    The Relativistic Avatars of Giant Magnons and their S-Matrix

    Full text link
    The motion of strings on symmetric space target spaces underlies the integrability of the AdS/CFT correspondence. Although these theories, whose excitations are giant magnons, are non-relativistic they are classically equivalent, via the Polhmeyer reduction, to a relativistic integrable field theory known as a symmetric space sine-Gordon theory. These theories can be formulated as integrable deformations of gauged WZW models. In this work we consider the class of symmetric spaces CP^{n+1} and solve the corresponding generalized sine-Gordon theories at the quantum level by finding the exact spectrum of topological solitons, or kinks, and their S-matrix. The latter involves a trignometric solution of the Yang-Baxer equation which exhibits a quantum group symmetry with a tower of states that is bounded, unlike for magnons, as a result of the quantum group deformation parameter q being a root of unity. We test the S-matrix by taking the semi-classical limit and comparing with the time delays for the scattering of classical solitons. We argue that the internal CP^{n-1} moduli space of collective coordinates of the solitons in the classical theory can be interpreted as a q-deformed fuzzy space in the quantum theory. We analyse the n=1 case separately and provide a further test of the S-matrix conjecture in this case by calculating the central charge of the UV CFT using the thermodynamic Bethe Ansatz.Comment: 33 pages, important correction to S-matrix to ensure crossing symmetr

    Non-supersymmetric Extremal RN-AdS Black Holes in N=2 Gauged Supergravity

    Full text link
    We investigate extremal Reissner-Nordstrom-AdS black holes in four-dimensional N=2 abelian gauged supergravity. We find a new attractor equation which is not reduced to the one in the asymptotically flat spacetime. Focusing on so-called the T^3-model with a single neutral vector multiplet, we obtain non-supersymmetric extremal Reissner-Nordstrom-AdS black hole solutions with regular event horizon in the D0-D4 and the D2-D6 charge configurations. The negative cosmological constant emerges even without the Fayet-Iliopoulos parameters. Furthermore, we also argue the formal description of the non-supersymmetric black hole solutions of the T^3-model and the STU-model in generic configurations.Comment: 23 pages, accepted version in JHE

    Scalar geometry and masses in Calabi-Yau string models

    Get PDF
    We study the geometry of the scalar manifolds emerging in the no-scale sector of Kahler moduli and matter fields in generic Calabi-Yau string compactifications, and describe its implications on scalar masses. We consider both heterotic and orientifold models and compare their characteristics. We start from a general formula for the Kahler potential as a function of the topological compactification data and study the structure of the curvature tensor. We then determine the conditions for the space to be symmetric and show that whenever this is the case the heterotic and the orientifold models give the same scalar manifold. We finally study the structure of scalar masses in this type of geometries, assuming that a generic superpotential triggers spontaneous supersymmetry breaking. We show in particular that their behavior crucially depends on the parameters controlling the departure of the geometry from the coset situation. We first investigate the average sGoldstino mass in the hidden sector and its sign, and study the implications on vacuum metastability and the mass of the lightest scalar. We next examine the soft scalar masses in the visible sector and their flavor structure, and study the possibility of realizing a mild form of sequestering relying on a global symmetry.Comment: 36 pages, no figure

    Supersymmetric branes with (almost) arbitrary tensions

    Full text link
    We present a supersymmetric version of the two-brane Randall-Sundrum scenario, with arbitrary brane tensions T_1 and T_2, subject to the bound |T_{1,2}| \leq \sqrt{-6\Lambda_5}, where \Lambda_5 < 0 is the bulk cosmological constant. Dimensional reduction gives N=1, D=4 supergravity, with cosmological constant \Lambda_4 in the range \half\Lambda_5 \leq \Lambda_4 \leq 0. The case with \Lambda_4 = 0 requires T_1 = -T_2 = \sqrt{-6\Lambda_5}. This work unifies and generalizes previous approaches to the supersymmetric Randall-Sundrum scenario. It also shows that the Randall-Sundrum fine-tuning is not a consequence of supersymmetry.Comment: 19pp; Published versio
    corecore