1,147 research outputs found

    Influence of waxes remelting used in investment casting on their thermal properties and linear shrinkage

    Get PDF
    This paper presents the results of thermal properties and linear shrinkage of jewelry waxes utilized in investment casting. Three types of jewelry waxes were cyclically processed (by heating, holding in a molten state and cooling)in the temperature range between 25 and 90 °C for about 7 hours. The samples were tested after 5th, 10th and 15thcycle. The remelting was designed to simulate the process of waxes reusability for production of patterns. Changes in thermal properties of waxes were determined using differential scanning calorimetry (DSC) and linear shrinkage values were specified. The conducted examinations allowed to establish the way of multiple utilization of waxes in producing precise models

    Impact of minority concentration on fundamental (H)D ICRF heating performance in JET-ILW

    Get PDF
    ITER will start its operation with non-activated hydrogen and helium plasmas at a reduced magnetic field of B-0 = 2.65 T. In hydrogen plasmas, the two ion cyclotron resonance frequency (ICRF) heating schemes available for central plasma heating (fundamental H majority and 2nd harmonic He-3 minority ICRF heating) are likely to suffer from relatively low RF wave absorption, as suggested by numerical modelling and confirmed by previous JET experiments conducted in conditions similar to those expected in ITER's initial phase. With He-4 plasmas, the commonly adopted fundamental H minority heating scheme will be used and its performance is expected to be much better. However, one important question that remains to be answered is whether increased levels of hydrogen (due to e. g. H pellet injection) jeopardize the high performance usually observed with this heating scheme, in particular in a full-metal environment. Recent JET experiments performed with the ITER-likewall shed some light onto this question and the main results concerning ICRF heating performance in L-mode discharges are summarized here

    Culture in embryonic kidney serum and xeno-free media as renal cell carcinoma and renal cell carcinoma cancer stem cells research model

    Get PDF
    The use of fetal bovine serum hinders obtaining reproducible experimental results and should also be removed in hormone and growth factor studies. In particular hormones found in FBS act globally on cancer cell physiology and influence transcriptome and metabolome. The aim of our study was to develop a renal carcinoma serum free culture model optimized for (embryonal) renal cells in order to select the best study model for downstream auto-, para- or endocrine research. Secondary aim was to verify renal carcinoma stem cell culture for this application. In the study, we have cultured renal cell carcinoma primary tumour cell line (786-0) as well as human kidney cancer stem cells in standard 2D monolayer cultures in Roswell Park Memorial Institute Medium or Dulbecco’s Modified Eagle’s Medium and Complete Human Kidney Cancer Stem Cell Medium, respectively. Serum-free, animal-component free Human Embryonic Kidney 293 media were tested. Our results revealed that xeno-free embryonal renal cells optimized culture media provide a useful tool in RCC cancer biology research and at the same time enable effective growth of RCC. We propose bio-mimic RCC cell culture model with specific serum-free and xeno-free medium that promote RCC cell viability

    Manufacturing and characterization of sustainable and recyclable wood-polypropylene biocomposites:Multiprocessing-properties-structure relationships

    Get PDF
    In this study, sustainable polymeric materials with a polypropylene matrix reinforced with wood waste were developed for structural applications. The new polymer biocomposites (WPCs) were evaluated for their mechanical and structural properties regarding their susceptibility to multiple processing. As thermo-mechanical degradation processes are associated with the repeated processing of plastics, which causes changes in the properties and structure of these materials. Therefore, to determine the extent to which the composites can be used under operating conditions, the composites were examined by DMA. As a result of the study observed some effects caused by the repeated effects of shear stress and temperature on the rheological and mechanical properties of polymer composites. The first of these is related to a decrease in viscosity of WPC composites subjected to the six times processing and changes in flow conditions during extrusion and injection moulding due to the degradation of the polypropylene matrix. As the viscosity of the composites decreased, a reduction in tensile strength and other mechanical properties of the polypropylene matrix was noted. On the other hand, the second effect observed leads to the conclusion that, as the composites' processing cycles increase, the WPC composite's mechanical properties increase due to an increase in the degree of homogenization of the individual components of the WPC composition. This study aims to describe the relationship between these two primary processes and to determine the relationship between the properties and the structure of the new WPCs.</p

    Cross-sensitization to Artemisia and Ambrosia Pollen Allergens in an Area Located Outside of the Current Distribution Range of Ambrosia

    Get PDF
    Introduction : The role of long-distance transported (LDT) Ambrosia pollen in inducing new sensitization and affecting sensitization rates in Artemisia -sensitized patients is unclear. Aim : The aim of this study was to estimate the degree of cross-sensitization to Ambrosia / Artemisia allergens in citizens of Poznan (Western Poland). This area is covered by extensive Artemisia populations but does not currently have local Ambrosia populations. Material and methods : Sera of 119 patients were tested by fluoroenzyme immunoassay (CAP-FEIA system) against pollen allergen extracts of Artemisia vulgaris and Ambrosia artemisiifolia , an allergenic component of A. vulgaris (nArt v 1), and an allergenic component of A. artemisiifolia ( nAmb a 1 ). Skin prick tests (SPTs, n = 86) were performed with pollen allergen extracts of A. vulgaris and A. artemisiifolia . Artemisia and Ambrosia pollen in ambient air was collected (1996Ăąïżœïżœ2013) by a Hirst type volumetric trap sited at roof level (33 m). Results : The SPT showed that the prevalence of sensitization to Ambrosia and Artemisia pollen exceeded 3.5, and 10.5, respectively. The measurements of IgE in blood serum (CAP-FEIA) revealed that among Ambrosia -sensitized patients 90.1 (20/22 patients) were concomitantly sensitized to Artemisia . 59.1 (13/22) of these patients reacted to nArt v 1, suggesting primary sensitization to Artemisia pollen. Only 2 (9.1) patients were mono-sensitized to Ambrosia pollen extract, but surprisingly not to nAmb a 1 . Conclusions : The LDT Ambrosia pollen had a negligible effect on the rate of sensitization to Ambrosia allergens in Poznan and did not increase the prevalence of sensitization to Artemisia pollen in this region. However, the majority of patients showing hypersensitization to Artemisia pollen might also present symptoms during elevated episodes of LDT of Ambrosia pollen

    PERSONAL NAVIGATION: EXTENDING MOBILE MAPPING TECHNOLOGIES INTO INDOOR ENVIRONMENTS

    Get PDF
    This paper discusses some unconventional methods for indoor-outdoor navigation, based on the integration of self-contained sensors, including GPS, IMU, digital barometer, magnetometer compass, and a human locomotion model. The human locomotion model is used as navigation  sensor and it is handled by Artificial Intelligence (AI) techniques that form an adaptive knowledge-based system (KBS), which is trained during the GPS signal reception, and is used to support navigation under GPS-denied conditions. A complementary technique used in our solution, which facilitates indoor navigation, is the image-based method (Flash LADAR). In this paper, the system design and an example performance analysis in the mixed indoor-outdoor environment are presented

    Application of the VUV and the soft x-ray systems on JET for the study of intrinsic impurity behavior in neon seeded hybrid discharges

    Get PDF
    This paper reports on impurity behavior in a set of hybrid discharges with Ne seeding—one of the techniques considered to reduce the power load on reactor walls. A series of experiments carried out with light gas injection on JET with the ITER-Like-Wall (ILW) suggests increased tungsten release and impurity accumulation [C. Challis et al., Europhysics Conference Abstracts 41F, 2.153 (2017)]. The presented method relies mainly on the measurements collected by vacuum-ultra-violet and soft X-ray (SXR) diagnostics including the “SOXMOS” spectrometer and the SXR camera system. Both diagnostics have some limitations. Consequently, only a combination of measurements from these systems is able to provide comprehensive information about high-Z [e.g., tungsten (W)] and mid-Z [nickel (Ni), iron (Fe), copper (Cu), and molybdenum (Mo)] impurities for their further quantitative diagnosis. Moreover, thanks to the large number of the SXR lines of sight, determination of a 2D radiation profile was also possible. Additionally, the experimental results were compared with numerical modeling based on integrated simulations with COREDIV. Detailed analysis confirmed that during seeding experiments, higher tungsten release is observed, which was also found in the past. Additionally, it was noticed that besides W, the contribution of molybdenum to SXR radiation was greater, which can be explained by the place of its origin.This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under Grant Agreement No. 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. This scientific work was partly supported by the Polish Ministry of Science and Higher Education within the framework of the scientific financial resources in the years 2014-2018 allocated for the realization of the international co-financed project.Postprint (author's final draft

    New perspectives for eye-sparing treatment strategies in primary uveal melanoma

    Get PDF
    Uveal melanoma is the most common intraocular malignancy and arises from melanocytes in the choroid, ciliary body, or iris. The current eye-sparing treatment options include surgical treatment, plaque brachytherapy, proton beam radiotherapy, stereotactic photon radiotherapy, or photodynamic therapy. However, the efficacy of these methods is still unsatisfactory. This article reviews several possible new treatment options and their potential advantages in treating localized uveal melanoma. These methods may be based on the physical destruction of the cancerous cells by applying ultrasounds. Two examples of such an approach are High-Intensity Focused Ultrasound (HIFU)—a promising technology of thermal destruction of solid tumors located deep under the skin and sonodynamic therapy (SDT) that induces reactive oxygen species. Another approach may be based on improving the penetration of anti-cancer agents into UM cells. The most promising technologies from this group are based on enhancing drug delivery by applying electric current. One such approach is called transcorneal iontophoresis and has already been shown to increase the local concentration of several different therapeutics. Another technique, electrically enhanced chemotherapy, may promote drug delivery from the intercellular space to cells. Finally, new advanced nanoparticles are developed to combine diagnostic imaging and therapy (i.e., theranostics). However, development. these methods More are mostly advanced at an and early targeted stage of preclinical development. studies More and advanced clinical trials and targeted would be preclinical needed to studies introduce and some clinical of trials these would techniques be needed to routine to introduce clinical practice. some of these techniques to routine clinical practice

    Brokering justice: global indigenous rights and struggles over hydropower in Nepal

    Get PDF
    This article explores the dynamics of brokerage at the intersection between the justice conceptions enshrined in global norms and the notions of justice asserted in specific socio-environmental struggles. Using the case of a small hydropower project in Nepal, we trace the attempts of an indigenous activist to enrol villagers in his campaign against the background of villagers’ everyday negotiations with the hydropower company. The study shows how global norms, such as indigenous peoples’ rights, may fail to gain traction on the ground or even become sources of injustice in particular contexts
    • 

    corecore