444 research outputs found
Dipole states in stable and unstable nuclei
A nuclear structure model based on linear response theory (i.e., Random Phase
Approximation) and which includes pairing correlations and anharmonicities
(coupling with collective vibrations), has been implemented in such a way that
it can be applied on the same footing to magic as well as open-shell nuclei. As
applications, we have chosen to study the dipole excitations both in
well-known, stable isotopes like Pb and Sn as well as in the
neutron-rich, unstable Sn nucleus, by addressing in the latter case the
question about the nature of the low-lying strength. Our results suggest that
the model is reliable and predicts in all cases low-lying strength of non
collective nature.Comment: 16 pages, 6 figures; submitted for publicatio
Calculation of stellar electron-capture cross sections on nuclei based on microscopic Skyrme functionals
A fully self-consistent microscopic framework for evaluation of nuclear
weak-interaction rates at finite temperature is introduced, based on Skyrme
functionals. The single-nucleon basis and the corresponding thermal occupation
factors of the initial nuclear state are determined in the finite-temperature
Skyrme Hartree-Fock model, and charge-exchange transitions to excited states
are computed using the finite-temperature RPA. Effective interactions are
implemented self-consistently: both the finite-temperature single-nucleon
Hartree-Fock equations and the matrix equations of RPA are based on the same
Skyrme energy density functional. Using a representative set of Skyrme
functionals, the model is applied in the calculation of stellar
electron-capture cross sections for selected nuclei in the iron mass group and
for neutron-rich Ge isotopes.Comment: 31 pages, 13 figures, submitted to Physical Review
Exotic modes of excitation in atomic nuclei far from stability
We review recent studies of the evolution of collective excitations in atomic
nuclei far from the valley of -stability. Collective degrees of freedom
govern essential aspects of nuclear structure, and for several decades the
study of collective modes such as rotations and vibrations has played a vital
role in our understanding of complex properties of nuclei. The multipole
response of unstable nuclei and the possible occurrence of new exotic modes of
excitation in weakly-bound nuclear systems, present a rapidly growing field of
research, but only few experimental studies of these phenomena have been
reported so far. Valuable data on the evolution of the low-energy dipole
response in unstable neutron-rich nuclei have been gathered in recent
experiments, but the available information is not sufficient to determine the
nature of observed excitations. Even in stable nuclei various modes of giant
collective oscillations had been predicted by theory years before they were
observed, and for that reason it is very important to perform detailed
theoretical studies of the evolution of collective modes of excitation in
nuclei far from stability. We therefore discuss the modern theoretical tools
that have been developed in recent years for the description of collective
excitations in weakly-bound nuclei. The review focuses on the applications of
these models to studies of the evolution of low-energy dipole modes from stable
nuclei to systems near the particle emission threshold, to analyses of various
isoscalar modes, those for which data are already available, as well as those
that could be observed in future experiments, to a description of
charge-exchange modes and their evolution in neutron-rich nuclei, and to
studies of the role of exotic low-energy modes in astrophysical processes.Comment: 123 pages, 59 figures, submitted to Reports on Progress in Physic
Room Temperature Organic Superconductor?
The electron--phonon coupling in fullerene C28 has been calculated from first
principles. The value of the associated coupling constant lambda/N(0) is found
to be a factor three larger than that associated with C60. Assuming similar
values of the density of levels at the Fermi surface N(0) and of the Coulomb
pseudopotential for C28-based solids as those associated with alkali-doped
fullerides A3C60, one obtains Tc(C28) \approx 8 Tc(C60).Comment: 10 pages, 2 figure
Sensitivity of the electric dipole polarizability to the neutron skin thickness in Pb
The static dipole polarizability, , in Pb has been
recently measured with high-resolution via proton inelastic scattering at the
Research Center for Nuclear Physics (RCNP). This observable is thought to be
intimately connected with the neutron skin thickness, , of the
same nucleus and, more fundamentally, it is believed to be associated with the
density dependence of the nuclear symmetry energy. The impact of
on in Pb is investigated and discussed on the basis
of a large and representative set of relativistic and non-relativistic nuclear
energy density functionals (EDF).Comment: Proceedings of NSD12, Opatija, Croatia, 9-13 July 201
Nuclear matter incompressibility coefficient in relativistic and nonrelativistic microscopic models
We systematically analyze the recent claim that nonrelativistic and
relativistic mean field (RMF) based random phase approximation (RPA)
calculations for the centroid energy E_0 of the isoscalar giant monopole
resonance yield for the nuclear matter incompressibility coefficient, K_{nm},
values which differ by about 20%. For an appropriate comparison with the RMF
based RPA calculations, we obtain the parameters for the Skyrme force used in
the nonrelativistic model by adopting the same procedure as employed in the
determination of the NL3 parameter set of an effective Lagrangian used in the
RMF model. Our investigation suggest that the discrepancy between the values of
K_{nm} predicted by the relativistic and nonrelativistic models is
significantly less than 20%.Comment: Revtex file (13 pages), appearing in PRC-Rapid Com
The Effect of the Pairing Interaction on the Energies of Isobar Analog Resonances in Sb and Isospin Admixture in Sn Isotopes
In the present study, the effect of the pairing interaction and the isovector
correlation between nucleons on the properties of the isobar analog resonances
(IAR) in Sb isotopes and the isospin admixture in Sn
isotopes is investigated within the framework of the quasiparticle random phase
approximation (QRPA). The form of the interaction strength parameter is related
to the shell model potential by restoring the isotopic invariance of the
nuclear part of the total Hamiltonian. In this respect, the isospin admixtures
in the Sn isotopes are calculated, and the dependence of the
differential cross section and the volume integral for the
Sn(He,t)Sb reactions at E(He) MeV occurring by the excitation
of IAR on mass number A is examined. Our results show that the calculated value
for the isospin mixing in the Sn isotope is in good agreement with Colo
et al.'s estimates , and the obtained values for the volume integral
change within the error range of the value reported by Fujiwara et al.
(535 MeV fm). Moreover, it is concluded that although the
differential cross section of the isobar analog resonance for the (He,t)
reactions is not sensitive to pairing correlations between nucleons, a
considerable effect on the isospin admixtures in isotopes can be
seen with the presence of these correlations.Comment: 16 pages, 5 EPS figures and 2 tables, Late
Isoscalar dipole strength in ^{208}_{82}Pb_{126}: the spurious mode and the strength in the continuum
Isoscalar dipole (compression) mode is studied first using schematic
harmonic-oscillator model and, then, the self-consistent Hartree-Fock (HF) and
random phase approximation (RPA) solved in coordinate space. Taking ^{208}Pb
and the SkM* interaction as a numerical example, the spurious component and the
strength in the continuum are carefully examined using the sum rules. It is
pointed out that in the continuum calculation one has to use an extremely fine
radial mesh in HF and RPA in order to separate, with good accuracy, the
spurious component from intrinsic excitations.Comment: 19 pages, 2 figure
Isoscalar Giant Dipole Resonance and Nuclear Matter Incompressibility Coefficient
We present results of microscopic calculations of the strength function,
S(E), and alpha-particle excitation cross sections sigma(E) for the isoscalar
giant dipole resonance (ISGDR). An accurate and a general method to eliminate
the contributions of spurious state mixing is presented and used in the
calculations. Our results provide a resolution to the long standing problem
that the nuclear matter incompressibility coefficient, K, deduced from sigma(E)
data for the ISGDR is significantly smaller than that deduced from data for the
isoscalar giant monopole resonance (ISGMR).Comment: 4 pages using revtex 3.0, 3 postscript figures created by Mathematica
4.
- …
