71 research outputs found

    A New Forward Secure Signature Scheme using Bilinear Maps

    Get PDF
    Forward-secure signatures are used to defeat signature forgeries in cases of key exposure. In this model, the signature key evolves with time and it is computationally infeasible for an adversary to forge a signature for some time-period prior to the key’s exposure. In this paper a new forward-secure digital signature scheme is presented, which is based on the use of bilinear maps recently advocated by Boneh and Franklin [9]. This scheme is efficiently constructed and can be used with a large number of time periods with a log magnitude complexity. The signing and key-update operations are very efficient when compared with other previously available schemes. A formal definition, as well as a detailed analysis of the security performance or this scheme, is presented. The security proof for this scheme is based on the Computational Diffie-Hellman assumption, which leads to a unique approach to proving security in the random oracle model. Furthermore, within the proof both the hash oracle and the signing oracle are constructed in an innovative manner

    Surface Operators in Abelian Gauge Theory

    Full text link
    We consider arbitrary embeddings of surface operators in a pure, non-supersymmetric abelian gauge theory on spin (non-spin) four-manifolds. For any surface operator with a priori simultaneously non-vanishing parameters, we explicitly show that the parameters transform naturally under an SL(2, Z) (or a congruence subgroup thereof) duality of the theory. However, for non-trivially-embedded surface operators, exact S-duality holds only if the quantum parameter effectively vanishes, while the overall SL(2, Z) (or a congruence subgroup thereof) duality holds up to a c-number at most, regardless. Via the formalism of duality walls, we furnish an alternative derivation of the transformation of parameters - found also to be consistent with a switch from Wilson to 't Hooft loop operators under S-duality. With any background embedding of surface operators, the partition function and the correlation functions of non-singular, gauge-invariant local operators on any curved four-manifold, are found to transform like modular forms under the respective duality groups.Comment: 30 pages. Minor refinemen

    \Omega-deformation of B-twisted gauge theories and the 3d-3d correspondence

    Full text link
    We study \Omega-deformation of B-twisted gauge theories in two dimensions. As an application, we construct an \Omega-deformed, topologically twisted five-dimensional maximally supersymmetric Yang-Mills theory on the product of a Riemann surface Σ\Sigma and a three-manifold MM, and show that when Σ\Sigma is a disk, this theory is equivalent to analytically continued Chern-Simons theory on MM. Based on these results, we establish a correspondence between three-dimensional N=2\mathcal{N} = 2 superconformal theories and analytically continued Chern-Simons theory. Furthermore, we argue that there is a mirror symmetry between {\Omega}-deformed two-dimensional theories.Comment: 26 pages. v2: the discussion on the boundary condition for vector multiplet improved, and other minor changes mad

    Controlling crystallization and its absence: Proteins, colloids and patchy models

    Full text link
    The ability to control the crystallization behaviour (including its absence) of particles, be they biomolecules such as globular proteins, inorganic colloids, nanoparticles, or metal atoms in an alloy, is of both fundamental and technological importance. Much can be learnt from the exquisite control that biological systems exert over the behaviour of proteins, where protein crystallization and aggregation are generally suppressed, but where in particular instances complex crystalline assemblies can be formed that have a functional purpose. We also explore the insights that can be obtained from computational modelling, focussing on the subtle interplay between the interparticle interactions, the preferred local order and the resulting crystallization kinetics. In particular, we highlight the role played by ``frustration'', where there is an incompatibility between the preferred local order and the global crystalline order, using examples from atomic glass formers and model anisotropic particles.Comment: 11 pages, 7 figure

    The Impact of Matching Vaccine Strains and Post-SARS Public Health Efforts on Reducing Influenza-Associated Mortality among the Elderly

    Get PDF
    Public health administrators do not have effective models to predict excess influenza-associated mortality and monitor viral changes associated with it. This study evaluated the effect of matching/mismatching vaccine strains, type/subtype pattern changes in Taiwan's influenza viruses, and the impact of post-SARS (severe acute respiratory syndrome) public health efforts on excess influenza-associated mortalities among the elderly. A negative binomial model was developed to estimate Taiwan's monthly influenza-associated mortality among the elderly. We calculated three winter and annual excess influenza-associated mortalities [pneumonia and influenza (P&I), respiratory and circulatory, and all-cause] from the 1999–2000 through the 2006–2007 influenza seasons. Obtaining influenza virus sequences from the months/years in which death from P&I was excessive, we investigated molecular variation in vaccine-mismatched influenza viruses by comparing hemagglutinin 1 (HA1) of the circulating and vaccine strains. We found that the higher the isolation rate of A (H3N2) and vaccine-mismatched influenza viruses, the greater the monthly P&I mortality. However, this significant positive association became negative for higher matching of A (H3N2) and public health efforts with post-SARS effect. Mean excess P&I mortality for winters was significantly higher before 2003 than after that year [mean ± S.D.: 1.44±1.35 vs. 0.35±1.13, p = 0.04]. Further analysis revealed that vaccine-matched circulating influenza A viruses were significantly associated with lower excess P&I mortality during post-SARS winters (i.e., 2005–2007) than during pre-SARS winters [0.03±0.06 vs. 1.57±1.27, p = 0.01]. Stratification of these vaccine-matching and post-SARS effect showed substantial trends toward lower elderly excess P&I mortalities in winters with either mismatching vaccines during the post-SARS period or matching vaccines during the pre-SARS period. Importantly, all three excess mortalities were at their highest in May, 2003, when inter-hospital nosocomial infections were peaking. Furthermore, vaccine-mismatched H3N2 viruses circulating in the years with high excess P&I mortality exhibited both a lower amino acid identity percentage of HA1 between vaccine and circulating strains and a higher numbers of variations at epitope B. Our model can help future decision makers to estimate excess P&I mortality effectively, select and test virus strains for antigenic variation, and evaluate public health strategy effectiveness

    Effects of the El Niño-Southern Oscillation on dengue epidemics in Thailand, 1996-2005

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite intensive vector control efforts, dengue epidemics continue to occur throughout Southeast Asia in multi-annual cycles. Weather is considered an important factor in these cycles, but the extent to which the El Niño-Southern Oscillation (ENSO) is a driving force behind dengue epidemics remains unclear.</p> <p>Methods</p> <p>We examined the temporal relationship between El Niño and the occurrence of dengue epidemics, and constructed Poisson autoregressive models for incidences of dengue cases. Global ENSO records, dengue surveillance data, and local meteorological data in two geographically diverse regions in Thailand (the tropical southern coastal region and the northern inland mountainous region) were analyzed.</p> <p>Results</p> <p>The strength of El Niño was consistently a predictor for the occurrence of dengue epidemics throughout time lags from 1 to 11 months in the two selected regions of Thailand. Up to 22% (in 8 northern inland mountainous provinces) and 15% (in 5 southern tropical coastal provinces) of the variation in the monthly incidence of dengue cases were attributable to global ENSO cycles. Province-level predictive models were fitted using 1996-2004 data and validated with out-of-fit data from 2005. The multivariate ENSO index was an independent predictor in 10 of the 13 studied provinces.</p> <p>Conclusion</p> <p>El Niño is one of the important driving forces for dengue epidemics across the geographically diverse regions of Thailand; however, spatial heterogeneity in the effect exists. The effects of El Niño should be taken into account in future epidemic forecasting for public health preparedness.</p

    The Role of Imported Cases and Favorable Meteorological Conditions in the Onset of Dengue Epidemics

    Get PDF
    Dengue/dengue hemorrhagic fever is the world's most widely spread mosquito-borne arboviral disease and threatens more than two-thirds of the world's population. Cases are mainly distributed in tropical and subtropical areas in accordance with vector habitats for Aedes aegypti and Ae. albopictus. However, the role of imported cases and favorable meteorological conditions has not yet been quantitatively assessed. This study verified the correlation between the occurrence of indigenous dengue and imported cases in the context of weather variables (temperature, rainfall, relative humidity, etc.) for different time lags in southern Taiwan. Our findings imply that imported cases have a role in igniting indigenous outbreaks, in non-endemics areas, when favorable weather conditions are present. This relationship becomes insignificant in the late phase of local dengue epidemics. Therefore, early detection and case management of imported cases through timely surveillance and rapid laboratory-diagnosis may avert large scale epidemics of dengue/dengue hemorrhagic fever. An early-warning surveillance system integrating meteorological data will be an invaluable tool for successful prevention and control of dengue, particularly in non-endemic countries

    Biosafety of Non-Surface Modified Carbon Nanocapsules as a Potential Alternative to Carbon Nanotubes for Drug Delivery Purposes

    Get PDF
    BACKGROUND: Carbon nanotubes (CNTs) have found wide success in circuitry, photovoltaics, and other applications. In contrast, several hurdles exist in using CNTs towards applications in drug delivery. Raw, non-modified CNTs are widely known for their toxicity. As such, many have attempted to reduce CNT toxicity for intravenous drug delivery purposes by post-process surface modification. Alternatively, a novel sphere-like carbon nanocapsule (CNC) developed by the arc-discharge method holds similar electric and thermal conductivities, as well as high strength. This study investigated the systemic toxicity and biocompatibility of different non-surface modified carbon nanomaterials in mice, including multi-walled carbon nanotubes (MWCNTs), single-walled carbon nanotubes (SWCNTs), carbon nanocapsules (CNCs), and C ₆₀ fullerene (C ₆₀). The retention of the nanomaterials and systemic effects after intravenous injections were studied. METHODOLOGY AND PRINCIPAL FINDINGS: MWCNTs, SWCNTs, CNCs, and C ₆₀ were injected intravenously into FVB mice and then sacrificed for tissue section examination. Inflammatory cytokine levels were evaluated with ELISA. Mice receiving injection of MWCNTs or SWCNTs at 50 µg/g b.w. died while C ₆₀ injected group survived at a 50% rate. Surprisingly, mortality rate of mice injected with CNCs was only at 10%. Tissue sections revealed that most carbon nanomaterials retained in the lung. Furthermore, serum and lung-tissue cytokine levels did not reveal any inflammatory response compared to those in mice receiving normal saline injection. CONCLUSION: Carbon nanocapsules are more biocompatible than other carbon nanomaterials and are more suitable for intravenous drug delivery. These results indicate potential biomedical use of non-surface modified carbon allotrope. Additionally, functionalization of the carbon nanocapsules could further enhance dispersion and biocompatibility for intravenous injection
    corecore