633 research outputs found

    Revue sur l'enlèvement des métaux des effluents par adsorption sur la sciure et les écorces de bois

    Get PDF
    Les résidus de transformation du bois tels les écorces et la sciure de bois ont été largement étudiés depuis quelques années pour leur propriété d'adsorption et d'enlèvement des métaux toxiques contenus dans les effluents contaminés. En ce qui concerne la sciure de bois, les recherches répertoriées ont porté principalement sur l'utilisation du sapin rouge, du manga, du tilleul, de l'épinette, du pin, du cèdre, du teck, de l'akamatsu et du buna. Pour ce qui est des écorces de bois, plusieurs espèces ont été étudiées, notamment les écorces de pin, de chêne et d'épinette. La présente revue fait le point sur les performances de ces différents adsorbants peu coûteux pour l'adsorption des principaux métaux contaminants (Cd, Cr, Cu, Hg, Ni, Pb et Zn). Les points discutés portent sur les méthodes de préparation (lavage, séchage et tamisage) et de traitement chimique de l'adsorbant (traitement acide ou basique, traitement à la formaldéhyde, phosphatation, carboxylation, sulfoéthylation, carboxyméthylation, etc.), les conditions opératoires utilisées lors de l'adsorption, les modèles thermodynamiques, cinétiques et autres applicables au couple adsorbant-adsorbat, l'effet des principaux paramètres opératoires (temps de contact, pH de traitement, température, concentration d'adsorbant, taille des particules, etc.), les principes et les mécanismes impliqués dans l'élimination des contaminants métalliques par les adsorbants présentés.Wood industry by-products such as barks and sawdusts have been widely studied in recent years for their property of metal adsorption and metal removal from contaminated effluents. Concerning the utilization of sawdusts, many researchers have studied metal adsorption on material from species such as red fir, mango, lime, pine, cedar, teak, Japanese red pine and Japanese beech. As regards wood barks, several species were studied, in particular pine, oak and spruce. The present review gives a progress report on the efficiency of these various inexpensive materials for the adsorption of different metals (Cd, Cr, Cu, Hg, Ni, Pb and Zn). The points discussed relate to the preparation methods (washing, drying, screening) and the chemical treatments of the adsorbents (acid or base treatment, formaldehyde treatment, phosphatation, carboxylation, sulfoethylation, carboxymethylation, etc.). We also consider the operating conditions used during adsorption, the thermodynamic, kinetic and other models applicable to the adsorbent-adsorbate couple, the effect of the operational parameters (time of contact, pH, temperature, adsorbent concentration, particle size, etc.), as well as the principles and mechanisms involved in metal removal by the adsorbents.The accumulation of organic or inorganic matter at the solid-liquid interface is the basis of almost all surface reactions. Adsorption is often a process described in terms of isotherms, which represent the relationship between the concentration of a solute in solution and the quantity adsorbed at the surface at constant temperature. The isotherms are often used to establish the maximum adsorption capacity of a given adsorbent for metals. Langmuir and Freundlich isotherms are the most frequently used and their models are presented in this review.Knowledge of adsorption parameters is essential for understanding the adsorption mechanisms involved. Usually, the maximum adsorption capacity for sawdusts and barks is reached after one hour. The pH of the ambient water is a very important parameter because it affects the metal adsorption capacities. For most of the metals studied, the adsorption capacity increases when the pH increases. The opposite effect is observed for metals involved in an anionic complex (Cr, Se, Pt, Au). Metal adsorption efficiency also improves with increases in substrate concentration because there are more available adsorption sites. Metal adsorption is affected by an another important factor, the particle size. In effect, a smaller size particle increases the specific surface and improves the adsorption capacity. The presence of anions in the effluent doesn't appear to have a great effect on adsorption results with sawdusts. However, some anions were reported to have an influence on the metal adsorption capacities of barks. In the case of a metal mixture, the presence of one metal may influence, compete or exclude the recovery of another metal from the solution.Sawdusts contain lignin, cellulose, tannin and protein. Wood tannin likely serves as a primary adsorption site for divalent cations. The application of chemical treatments on sawdusts could modify the lignin functional groups. Other studies regarding the participation of major components of barks (lignin, carbohydrate and protein) in the adsorption process revealed the involvement of amine and carboxyl functional groups. The proposed mechanism involves an ion-exchange process. This phenomenon suggests that cationic exchange is the active mechanism for some wood species, in agreement with the work of some researchers.Currently, only a few industries use plant biomass to eliminate metals in wastewater. To encourage industries to use this biotechnology, research has to be oriented towards the cheapest and most competitive process rather than the current and conventional process. Forest waste products are produced in large quantities in several countries. They constitute easily-available resources of low cost. Future research in this field should be focused on cheap new chemical treatments to apply to by-products to improve their adsorption capacities

    Time-Resolved Diffusing Wave Spectroscopy for selected photon paths beyond 300 transport mean free paths

    Full text link
    This paper is devoted to the theoretical and experimental demonstration of the possibility to perform time-resolved diffusing wave spectroscopy: we successfully registered field fluctuations for selected photon path lengths that can overpass 300 transport mean free paths. Such a performance opens new possibilities for biomedical optics applications.Comment: 12 pages, 3 figure

    Acute febrile illness and influenza disease burden in a rural cohort dedicated to malaria in Senegal, 2012-2013

    Get PDF
    Background African populations are considered to be particularly vulnerable to fever illnesses, including malaria, and acute respiratory disease, owing to limited resources and overcrowding. However, the overall burden of influenza in this context is poorly defined and incidence data for African countries are scarce. We therefore studied the fever syndrome incidence and more specifically influenza incidence in a cohort of inhabitants of Dielmo and Ndiop in Sokone district, Senegal. Methods Daily febrile-illness data were prospectively obtained from January 2012 to December 2013 from the cohort of the villages of Dielmo and Ndiop, initially dedicated to the study of malaria. Nasopharyngeal swabs were collected from, and malaria diagnosis tests (thick blood smears) carried out on, every febrile individual during clinical visits; reverse transcriptase- polymerase chain reaction was used to identify influenza viruses in the samples. Binomial negative regression analysis was used to study the relationship between the monthly incidence rate and various covariates. Results In Dielmo and Ndiop, the incidence ofmalaria has decreased, but fever syndromes remain frequent. Among the 1036 inhabitants included in the cohort, a total of 1,129 episodes of fever were reported. Influenza was present all year round with peaks in October-December 2012 and August 2013. The fever, ILI and influenza incidence density rates differed significantly between age groups. At both sites, the adjusted incidence relative risks for fever syndromes and ILI were significantly higher in the [6-24 months) than other age groups: 7.3 (95% CI: [5.7-9.3]) and 16.1 (95% CI: [11.1-23.3]) respectively. The adjusted incidence relative risk for influenza was significantly higher for the [0-6 months) than other age groups: 9.9 (95% CI: [2.9-33.6]). At both sites, incidence density rates were lowest among adults > = 50 years. Conclusions In this rural setting in Senegal, influenza was most frequent among the youngest children. Preventive strategies targeting this population should be implemented

    Graph-Based Approach for Spatial Heterogeneity Analysis in Tumor Microenvironment

    Get PDF
    Introduction/ Background The interaction between tumor and surrounding microenvironment (TME) is recognized as playing an important role in the progression of the disease. Understanding of the interaction between tumor and immune system is the focus of several studies dedicated to the improvement of cancer immunotherapy effectiveness [1]. On the other hand, it has been shown that invasion and metastasis of breast tumors is influenced by collagen organization at the tumor-stromal interface [2]. The characterization of such interactions relies on an efficient spatial distribution quantification of TME. Graph-based analysis tools are the best suitable to answer this question as they have the ability to represent spatial arrangements and neighborhood relationships of different tissue components [3]. Aims In this work, we propose a novel approach to characterize the spatial relationships between cancer cells and TME components in breast tumors, using graph theory and sparse sets’ mathematical morphology (MM). The tools of morphology on graphs were first used in [4] to study the neighborhood relationships between cells in germinal centers from lymph nodes, then in [5] for semantic spatial configuration modeling in histopathology. In our study, we propose new morphological descriptors characterizing the tumor architecture and the interactions with TME cells. Methods Towards a better evaluation and understanding, we use simulated data of different breast tumor types , , where locations of cancer nuclei (CN), fibroblasts (synthesizers of collagen, FN), and lymphocytes (LN) are already known. In order to set neighborhood relationships between different cells, Delaunay graph [3] is first reconstructed on all cells, and alpha-shape filter [5] is applied to circumvent border effects, giving new graph denoted G . The designed features are extracted basically from two different morphological operations. The first operation is composed of successive morphological erosions [4] applied to the subgraph induced by CN (denoted SGC, ), repeated until the subgraph is null. The curve given by the number of CN in terms of erosions provides 3 significant characteristics : I) The origin slope describes the number of CN on the boundary of tumor aggregates (TA) and, thus, the tumor-stromal interface ; II) The area under curve (AUC) reflects the density within TAs, and III) the number of iterations outlines the morphologic radius of the largest TA and, consequently, the geodesic distance of the farthest tumor cell from LN and/or FN. The second morphological operation is composed of successive morphological dilations applied to SGC with non-overlapping control of labeled connected-components . The goal behind this operation is to investigate the TME cells surrounding each TA. The ratio between the number of LN and the number of CN, and the means of the Euclidean and the geodesic distances of LN from CN on the boundary are calculated for each TA . Results In this work, we have briefly presented a conceptual framework for analyzing the architecture of breast tumors and the interactions with the surrounding microenvironment. New graph-based features were proposed to characterize the spatial distribution of TME components and were tested on simulated data. In our future works, we will include adipose tissue [6], blood vessels and endothelial cells. We will also focus on the anisotropic characterization of collagen, and test the approach on real dataset

    Implication of the Autologous Immune System in BCR-ABL Transcript Variations in Chronic Myelogenous Leukemia Patients Treated with Imatinib.

    Get PDF
    International audienceImatinib and other tyrosine kinase inhibitors (TKI) have improved treatment of chronic myelogenous leukemia (CML); however, most patients are not cured. Deeper mechanistic understanding may improve TKI combination therapies to better control the residual leukemic cell population. In analyzing our patients' data, we found that many patients who otherwise responded well to imatinib therapy still showed variations in their BCR-ABL transcripts. To investigate this phenomenon, we applied a mathematical model that integrates CML and an autologous immune response to the patients' data. We define an immune window or a range of leukemic loads for which the autologous immune system induces an improved response. Our modeling results suggest that, at diagnosis, a patient's leukemic load is able to partially or fully suppress the autologous immune response developed in a majority of patients, toward the CML clone(s). Imatinib therapy drives the leukemic population into the "immune window," allowing the patient's autologous immune cells to expand and eventually mount an efficient recognition of the residual leukemic burden. This response drives the leukemic load below this immune window, allowing the leukemic population to partially recover until another weaker immune response is initiated. Thus, the autologous immune response may explain the oscillations in BCR-ABL transcripts regularly observed in patients on imatinib
    • …
    corecore