1,046 research outputs found

    Reconstruction of nuclear quadrupole interaction in (In,Ga)As/GaAs quantum dots observed by transmission electron microscopy

    Full text link
    A microscopic study of the individual annealed (In,Ga)As/GaAs quantum dots is done by means of high-resolution transmission electron microscopy. The Cauchy-Green strain-tensor component distribution and the chemical composition of the (In,Ga)As alloy are extracted from the microscopy images. The image processing allows for the reconstruction of the strain-induced electric-field gradients at the individual atomic columns extracting thereby the magnitude and asymmetry parameter of the nuclear quadrupole interaction. Nuclear magnetic resonance absorption spectra are analyzed for parallel and transverse mutual orientations of the electric-field gradient and a static magnetic field.Comment: 8 pages, 6 figure

    Information communication technology: powering up and creating a culture of innovation for 21st century language education

    Get PDF
    The contemporary language educator must be focused on rich and high quality experiences for 21st century language learners. Education is rapidly evolving in the digital age with direct application in the classroom for teachers of English to speakers of other languages. The way that we teach is changing by necessity and by design, and innovative teaching and methodologies are essential for the success of students. An arsenal of digital tools is literally at our fingertips for all levels of instruction, and educators must tackle the latest technology and digital learning opportunities as quickly as they emerge, to stay current with their students, if nothing else. In the sections to follow, we explore five of the technologies which we believe every educator must understand to remain current, not only with their peers, but with their increasingly technologically savvy students. These five:  laptops and tablets; mobile learning devices, i.e. smart phones; rapidly deployed software and “apps”; gaming systems; and social media, are already being employed in many learning environments. We argue that for the sake of currency, if nothing else, all educators must not just learn, but master all five of these to be effective in the contemporary learning world of the future. We conclude with a section on expertise and online teaching and learning as this has emerged as a significant instructional wave of the future

    Two-point motional Stark effect diagnostic for Madison Symmetric Torus

    Get PDF
    A high-precision spectral motional Stark effect (MSE) diagnostic provides internal magnetic field measurements for Madison Symmetric Torus (MST) plasmas. Currently, MST uses two spatial views-on the magnetic axis and on the midminor (off-axis) radius, the latter added recently. A new analysis scheme has been developed to infer both the pitch angle and the magnitude of the magnetic field from MSE spectra. Systematic errors are reduced by using atomic data from atomic data and analysis structure in the fit. Reconstructed current density and safety factor profiles are more strongly and globally constrained with the addition of the off-axis radius measurement than with the on-axis one only

    Local Moment Formation in the Periodic Anderson Model with Superconducting Correlations

    Full text link
    We study local moment formation in the presence of superconducting correlations among the f-electrons in the periodic Anderson model. Local moments form if the Coulomb interaction U>U_cr. We find that U_cr is considerably stronger in the presence of superconducting correlations than in the non-superconducting system. Our study is done for various values of the f-level energy and electronic density. The smallest critical U_cr values occur for the case where the number of f- electrons per site is equal to one. In the presence of d-wave superconducting correlations we find that local moment formation presents a quantum phase transition as function of pressure. This quantum phase transition separates a region where local moments and d-wave superconductivity coexist from another region characterized by a superconducting ground state with no local moments. We discuss the possible relevance of these results to experimental studies of the competition between magnetic order and superconductivity in CeCu_2Si_2.Comment: 4 pages. accepted for publication in Phys. Rev.

    Electronic Duality in Strongly Correlated Matter

    Full text link
    Superconductivity develops from an attractive interaction between itinerant electrons that creates electron pairs which condense into a macroscopic quantum state--the superconducting state. On the other hand, magnetic order in a metal arises from electrons localized close to the ionic core and whose interaction is mediated by itinerant electrons. The dichotomy between local moment magnetic order and superconductivity raises the question of whether these two states can coexist and involve the same electrons. Here we show that the single 4f-electron of cerium in CeRhIn5 simultaneously produces magnetism, characteristic of localization, and superconductivity that requires itinerancy. The dual nature of the 4f-electron allows microscopic coexistence of antiferromagnetic order and superconductivity whose competition is tuned by small changes in pressure and magnetic field. Electronic duality contrasts with conventional interpretations of coexisting spin-density magnetism and superconductivity and offers a new avenue for understanding complex states in classes of materials.Comment: 14 pages, 4 figure

    Coexistence of antiferromagnetism and superconductivity in heavy-fermions systems

    Full text link
    We report the novel pressure(P)-temperature(T) phase diagrams of antiferromagnetism (AF) and superconductivity (SC) in CeRhIn5_5, CeIn3_3 and CeCu2_2Si2_2 revealed by the NQR measurement. In the itinerant helical magnet CeRhIn5_5, we found that the N\'eel temperature TNT_N is reduced at PP \geq 1.23 GPa with an emergent pseudogap behavior. The coexistence of AF and SC is found in a narrow P range of 1.63 - 1.75 GPa, followed by the onset of SC with line-node gap over a wide P window 2.1 - 5 GPa. In CeIn3_3, the localized magnetic character is robust against the application of pressure up to PP \sim 1.9 GPa, beyond which the system evolves into an itinerant regime in which the resistive superconducting phase emerges. We discuss the relationship between the phase diagram and the magnetic fluctuations. In CeCu2_2Si2_2, the SC and AF coexist on a microscopic level once its lattice parameter is expanded. We remark that the underlying marginal antiferromagnetic state is due to collective magnetic excitations in the superconducting state in CeCu2_2Si2_2. An interplay between AF and SC is discussed on the SO(5) scenario that unifies AF and SC. We suggest that the SC and AF in CeCu2_2Si2_2 have a common mechanism.Comment: 6 pages, 5 figures, proceeding of ISSP200

    Coexistence of antiferromagnetism and superconductivity in the Anderson lattice

    Full text link
    We study the interplay between antiferromagnetism and superconductivity in a generalized infinite-UU Anderson lattice, where both superconductivity and antiferromagnetic order are introduced phenomenologically in mean field theory. In a certain regime, a quantum phase transition is found which is characterized by an abrupt expulsion of magnetic order by d-wave superconductivity, as externally applied pressure increases. This transition takes place when the d-wave superconducting critical temperature, TcT_c, intercepts the magnetic critical temperature, TmT_m, under increasing pressure. Calculations of the quasiparticle bands and density of states in the ordered phases are presented. We calculate the optical conductivity σ(ω)\sigma(\omega) in the clean limit. It is shown that when the temperature drops below TmT_m a double peak structure develops in σ(ω)\sigma(\omega).Comment: 18 pages, 13 figure

    Magnetic flux jumps in textured Bi2Sr2CaCu2O(8+d)

    Full text link
    Magnetic flux jumps in textured Bi2Sr2CaCu2O(8+d) have been studied by means of magnetization measurements in the temperature range between 1.95 K and Tc, in an external magnetic field up to 9 T. Flux jumps were found in the temperature range 1.95 K - 6 K, with the external magnetic field parallel to the c axis of the investigated sample. The effect of sample history on magnetic flux jumping was studied and it was found to be well accounted for by the available theoretical models. The magnetic field sweep rate strongly influences the flux jumping and this effect was interpreted in terms of the influence of both flux creep and the thermal environment of the sample. Strong flux creep was found in the temperature and magnetic field range where flux jumps occur suggesting a relationship between the two. The heat exchange conditions between the sample and the experimental environment also influence the flux jumping behavior. Both these effects stabilize the sample against flux instabilities, and this stabilizing effect increases with decreasing magnetic field sweep rate. Demagnetizing effects are also shown to have a significant influence on flux jumping.Comment: 10 pages, 6 figures, RevTeX4, submitted to Phys. Rev.
    corecore