10,539 research outputs found
Ground States in the Spin Boson Model
We prove that the Hamiltonian of the model describing a spin which is
linearly coupled to a field of relativistic and massless bosons, also known as
the spin-boson model, admits a ground state for small values of the coupling
constant lambda. We show that the ground state energy is an analytic function
of lambda and that the corresponding ground state can also be chosen to be an
analytic function of lambda. No infrared regularization is imposed. Our proof
is based on a modified version of the BFS operator theoretic renormalization
analysis. Moreover, using a positivity argument we prove that the ground state
of the spin-boson model is unique. We show that the expansion coefficients of
the ground state and the ground state energy can be calculated using regular
analytic perturbation theory
The EVN view of the highly variable TeV active galaxy IC 310
Very-high-energy -ray observations of the active galaxy IC 310 with
the MAGIC telescopes have revealed fast variability with doubling time scales
of less than 4.8min. This implies that the emission region in IC 310 is smaller
than 20% of the gravitational radius of the central supermassive black hole
with a mass of , which poses serious questions on the
emission mechanism and classification of this enigmatic object. We report on
the first quasi-simultaneous multi-frequency VLBI observations of IC 310
conducted with the EVN. We find a blazar-like one-sided core-jet structure on
parsec scales, constraining the inclination angle to be less than but very small angles are excluded to limit the de-projected length
of the large-scale radio jet.Comment: 4 pages, proceedings of the 12th European VLBI Network Symposium and
Users Meeting - EVN 2014, 7-10 October 2014, Cagliari, Italy. Published
online in PoS, ID.10
Binding threshold for the Pauli-Fierz operator
For the Pauli-Fierz operator with a short range potential we study the
binding threshold as a function of the fine structure constant and
show that it converges to the binding threshold for the Schr\"odinger operator
in the small limit
Persistent detwinning of iron pnictides by small magnetic fields
Our comprehensive study on EuFeAs reveals a dramatic reduction of
magnetic detwinning fields compared to other AFeAs (A = Ba, Sr, Ca)
iron pnictides by indirect magneto-elastic coupling of the Eu ions. We
find that only 0.1T are sufficient for persistent detwinning below the local
Eu ordering; above = 19K, higher fields are necessary.
Even after the field is switched off, a significant imbalance of twin domains
remains constant up to the structural and electronic phase transition (190K).
This persistent detwinning provides the unique possibility to study the low
temperature electronic in-plane anisotropy of iron pnictides without applying
any symmetrybreaking external force.Comment: accepted by Physical Review Letter
Quantum electrodynamics of relativistic bound states with cutoffs
We consider an Hamiltonian with ultraviolet and infrared cutoffs, describing
the interaction of relativistic electrons and positrons in the Coulomb
potential with photons in Coulomb gauge. The interaction includes both
interaction of the current density with transversal photons and the Coulomb
interaction of charge density with itself. We prove that the Hamiltonian is
self-adjoint and has a ground state for sufficiently small coupling constants.Comment: To appear in "Journal of Hyperbolic Differential Equation
Ground State and Resonances in the Standard Model of Non-relativistic QED
We prove existence of a ground state and resonances in the standard model of
the non-relativistic quantum electro-dynamics (QED). To this end we introduce a
new canonical transformation of QED Hamiltonians and use the spectral
renormalization group technique with a new choice of Banach spaces.Comment: 50 pages change
Black Hole Lightning from the Peculiar Gamma-Ray Loud Active Galactic Nucleus IC 310
The nearby active galaxy IC 310, located in the outskirts of the Perseus
cluster of galaxies is a bright and variable multi-wavelength emitter from the
radio regime up to very high gamma-ray energies above 100 GeV. Originally, the
nucleus of IC 310 has been classified as a radio galaxy. However, studies of
the multi-wavelength emission showed several properties similarly to those
found from blazars as well as radio galaxies. In late 2012, we have organized
the first contemporaneous multi-wavelength campaign including radio, optical,
X-ray and gamma-ray instruments. During this campaign an exceptionally bright
flare of IC 310 was detected with the MAGIC telescopes in November 2012
reaching an averaged flux level in the night of up to one Crab above 1 TeV with
a hard spectrum over two decades in energy. The intra-night light curve showed
a series of strong outbursts with flux-doubling time scales as fast as a few
minutes. The fast variability constrains the size of the gamma-ray emission
regime to be smaller than 20% of the gravitational radius of its central black
hole. This challenges the shock acceleration models, commonly used to explain
gamma-ray radiation from active galaxies. Here, we will present more details on
the MAGIC data and discuss several possible alternative emission models.Comment: 8 pages, 5 figures, Proceedings of the 34th International Cosmic Ray
Conference, 30 July - 6 August, 2015, The Hague, The Netherland
Absence of Ground States for a Class of Translation Invariant Models of Non-relativistic QED
We consider a class of translation invariant models of non-relativistic QED
with net charge. Under certain natural assumptions we prove that ground states
do not exist in the Fock space
Phase diagrams of the 2D t-t'-U Hubbard model from an extended mean field method
It is well-known from unrestricted Hartree-Fock computations that the 2D
Hubbard model does not have homogeneous mean field states in significant
regions of parameter space away from half filling. This is incompatible with
standard mean field theory. We present a simple extension of the mean field
method that avoids this problem. As in standard mean field theory, we restrict
Hartree-Fock theory to simple translation invariant states describing
antiferromagnetism (AF), ferromagnetism (F) and paramagnetism (P), but we use
an improved method to implement the doping constraint allowing us to detect
when a phase separated state is energetically preferred, e.g. AF and F
coexisting at the same time. We find that such mixed phases occur in
significant parts of the phase diagrams, making them much richer than the ones
from standard mean field theory. Our results for the 2D t-t'-U Hubbard model
demonstrate the importance of band structure effects.Comment: 6 pages, 5 figure
'Return to equilibrium' for weakly coupled quantum systems: a simple polymer expansion
Recently, several authors studied small quantum systems weakly coupled to
free boson or fermion fields at positive temperature. All the approaches we are
aware of employ complex deformations of Liouvillians or Mourre theory (the
infinitesimal version of the former). We present an approach based on polymer
expansions of statistical mechanics. Despite the fact that our approach is
elementary, our results are slightly sharper than those contained in the
literature up to now. We show that, whenever the small quantum system is known
to admit a Markov approximation (Pauli master equation \emph{aka} Lindblad
equation) in the weak coupling limit, and the Markov approximation is
exponentially mixing, then the weakly coupled system approaches a unique
invariant state that is perturbatively close to its Markov approximation.Comment: 23 pages, v2-->v3: Revised version: The explanatory section 1.7 has
changed and Section 3.2 has been made more explici
- …
