8,511 research outputs found

    Ground States in the Spin Boson Model

    Full text link
    We prove that the Hamiltonian of the model describing a spin which is linearly coupled to a field of relativistic and massless bosons, also known as the spin-boson model, admits a ground state for small values of the coupling constant lambda. We show that the ground state energy is an analytic function of lambda and that the corresponding ground state can also be chosen to be an analytic function of lambda. No infrared regularization is imposed. Our proof is based on a modified version of the BFS operator theoretic renormalization analysis. Moreover, using a positivity argument we prove that the ground state of the spin-boson model is unique. We show that the expansion coefficients of the ground state and the ground state energy can be calculated using regular analytic perturbation theory

    Ground State and Resonances in the Standard Model of Non-relativistic QED

    Full text link
    We prove existence of a ground state and resonances in the standard model of the non-relativistic quantum electro-dynamics (QED). To this end we introduce a new canonical transformation of QED Hamiltonians and use the spectral renormalization group technique with a new choice of Banach spaces.Comment: 50 pages change

    The EVN view of the highly variable TeV active galaxy IC 310

    Full text link
    Very-high-energy γ\gamma-ray observations of the active galaxy IC 310 with the MAGIC telescopes have revealed fast variability with doubling time scales of less than 4.8min. This implies that the emission region in IC 310 is smaller than 20% of the gravitational radius of the central supermassive black hole with a mass of 3×108M3\times 10^8 M_\odot, which poses serious questions on the emission mechanism and classification of this enigmatic object. We report on the first quasi-simultaneous multi-frequency VLBI observations of IC 310 conducted with the EVN. We find a blazar-like one-sided core-jet structure on parsec scales, constraining the inclination angle to be less than 20\sim 20^\circ but very small angles are excluded to limit the de-projected length of the large-scale radio jet.Comment: 4 pages, proceedings of the 12th European VLBI Network Symposium and Users Meeting - EVN 2014, 7-10 October 2014, Cagliari, Italy. Published online in PoS, ID.10

    Binding threshold for the Pauli-Fierz operator

    Full text link
    For the Pauli-Fierz operator with a short range potential we study the binding threshold as a function of the fine structure constant α\alpha and show that it converges to the binding threshold for the Schr\"odinger operator in the small α\alpha limit

    Approach to ground state and time-independent photon bound for massless spin-boson models

    Full text link
    It is widely believed that an atom interacting with the electromagnetic field (with total initial energy well-below the ionization threshold) relaxes to its ground state while its excess energy is emitted as radiation. Hence, for large times, the state of the atom+field system should consist of the atom in its ground state, and a few free photons that travel off to spatial infinity. Mathematically, this picture is captured by the notion of asymptotic completeness. Despite some recent progress on the spectral theory of such systems, a proof of relaxation to the ground state and asymptotic completeness was/is still missing, except in some special cases (massive photons, small perturbations of harmonic potentials). In this paper, we partially fill this gap by proving relaxation to an invariant state in the case where the atom is modelled by a finite-level system. If the coupling to the field is sufficiently infrared-regular so that the coupled system admits a ground state, then this invariant state necessarily corresponds to the ground state. Assuming slightly more infrared regularity, we show that the number of emitted photons remains bounded in time. We hope that these results bring a proof of asymptotic completeness within reach.Comment: 45 pages, published in Annales Henri Poincare. This archived version differs from the journal version because we corrected an inconsequential mistake in Section 3.5.1: to do this, a new paragraph was added after Lemma 3.

    Persistent detwinning of iron pnictides by small magnetic fields

    Full text link
    Our comprehensive study on EuFe2_2As2_2 reveals a dramatic reduction of magnetic detwinning fields compared to other AFe2_2As2_2 (A = Ba, Sr, Ca) iron pnictides by indirect magneto-elastic coupling of the Eu2+^{2+} ions. We find that only 0.1T are sufficient for persistent detwinning below the local Eu2+^{2+} ordering; above TEuT_\text{Eu} = 19K, higher fields are necessary. Even after the field is switched off, a significant imbalance of twin domains remains constant up to the structural and electronic phase transition (190K). This persistent detwinning provides the unique possibility to study the low temperature electronic in-plane anisotropy of iron pnictides without applying any symmetrybreaking external force.Comment: accepted by Physical Review Letter

    Quantum electrodynamics of relativistic bound states with cutoffs

    Full text link
    We consider an Hamiltonian with ultraviolet and infrared cutoffs, describing the interaction of relativistic electrons and positrons in the Coulomb potential with photons in Coulomb gauge. The interaction includes both interaction of the current density with transversal photons and the Coulomb interaction of charge density with itself. We prove that the Hamiltonian is self-adjoint and has a ground state for sufficiently small coupling constants.Comment: To appear in "Journal of Hyperbolic Differential Equation

    Origin of the anomalous Hall Effect in overdoped n-type cuprates: current vertex corrections due to antiferromagnetic fluctuations

    Full text link
    The anomalous magneto-transport properties in electron doped (n-type) cuprates were investigated using Hall measurements at THz frequencies. The complex Hall angle was measured in overdoped Pr2x_{\rm 2-x}Cex_{\rm x}CuO4_{\rm 4} samples (x=0.17 and 0.18) as a continuous function of temperature above TcT_c at excitation energies 5.24 and 10.5 meV. The results, extrapolated to low temperatures, show that inelastic scattering introduces electron-like contributions to the Hall response. First principle calculations of the Hall angle that include current vertex corrections (CVC) induced by electron interactions mediated by magnetic fluctuations in the Hall conductivity reproduce the temperature, frequency, and doping dependence of the experimental data. These results show that CVC effects are the source of the anomalous Hall transport properties in overdoped n-\text{-}type cuprates.Comment: 5 pages, 3 figure
    corecore