2,129 research outputs found
Low-speed wind-tunnel investigation of the flight dynamic characteristics of an advanced turboprop business/commuter aircraft configuration
An investigation was conducted to determine the low-speed flight dynamic behavior of a representative advanced turboprop business/commuter aircraft concept. Free-flight tests were conducted in the NASA Langley Research Center's 30- by 60-Foot Tunnel. In support of the free-flight tests, conventional static, dynamic, and free-to-roll oscillation tests were performed. Tests were intended to explore normal operating and post stall flight conditions, and conditions simulating the loss of power in one engine
Titanium Nitride Films for Ultrasensitive Microresonator Detectors
Titanium nitride (TiNx) films are ideal for use in superconducting
microresonator detectors because: a) the critical temperature varies with
composition (0 < Tc < 5 K); b) the normal-state resistivity is large, \rho_n ~
100 Ohm cm, facilitating efficient photon absorption and providing a large
kinetic inductance and detector responsivity; and c) TiN films are very hard
and mechanically robust. Resonators using reactively sputtered TiN films show
remarkably low loss (Q_i > 10^7) and have noise properties similar to
resonators made using other materials, while the quasiparticle lifetimes are
reasonably long, 10-200 s. TiN microresonators should therefore reach
sensitivities well below 10^-19 WHz^(-1/2).Comment: to be published in AP
Photoelectrochemical Hydrogen Evolution Using Si Microwire Arrays
Arrays of B-doped p-Si microwires, diffusion-doped with P to form a radial n+ emitter and subsequently coated with a 1.5-nm-thick discontinuous film of evaporated Pt, were used as photocathodes for H_2 evolution from water. These electrodes yielded thermodynamically based energy-conversion efficiencies >5% under 1 sun solar simulation, despite absorbing less than 50% of the above-band-gap incident photons. Analogous p-Si wire-array electrodes yielded efficiencies <0.2%, largely limited by the low photovoltage generated at the p-Si/H_2O junction
CBR Anisotropy from Primordial Gravitational Waves in Two-Component Inflationary Cosmology
We examine stochastic temperature fluctuations of the cosmic background
radiation (CBR) arising via the Sachs-Wolfe effect from gravitational wave
perturbations produced in the early universe. We consider spatially flat,
perturbed FRW models that begin with an inflationary phase, followed by a mixed
phase containing both radiation and dust. The scale factor during the mixed
phase takes the form , where are
constants. During the mixed phase the universe smoothly transforms from being
radiation to dust dominated. We find analytic expressions for the graviton mode
function during the mixed phase in terms of spheroidal wave functions. This
mode function is used to find an analytic expression for the multipole moments
of the two-point angular correlation function
for the CBR anisotropy. The analytic expression for the multipole
moments is written in terms of two integrals, which are evaluated numerically.
The results are compared to multipoles calculated for models that are {\it
completely} dust dominated at last-scattering. We find that the multipoles
of the CBR temperature perturbations for are
significantly larger for a universe that contains both radiation and dust at
last-scattering. We compare our results with recent, similar numerical work and
find good agreement. The spheroidal wave functions may have applications to
other problems of cosmological interest.Comment: 28 pgs + 6 postscript figures, RevTe
Is the squeezing of relic gravitational waves produced by inflation detectable?
Grishchuk has shown that the stochastic background of gravitational waves
produced by an inflationary phase in the early Universe has an unusual
property: it is not a stationary Gaussian random process. Due to squeezing, the
phases of the different waves are correlated in a deterministic way, arising
from the process of parametric amplification that created them. The resulting
random process is Gaussian but non-stationary. This provides a unique signature
that could in principle distinguish a background created by inflation from
stationary stochastic backgrounds created by other types of processes. We
address the question: could this signature be observed with a gravitational
wave detector? Sadly, the answer appears to be "no": an experiment which could
distinguish the non-stationary behavior would have to last approximately the
age of the Universe at the time of measurement. This rules out direct detection
by ground and space based gravitational wave detectors, but not indirect
detections via the electromagnetic Cosmic Microwave Background Radiation
(CMBR).Comment: 17 pages, 4 Postscript figures, uses revtex, psfig, to be submitted
to PRD, minor revisions - appendix B clarified, corrected typos, added
reference
Genetic Subdivision and Variation in Selfing Rates Among Central American Populations of the Mangrove Rivulus, Kryptolebias marmoratus.
We used 32 polymorphic microsatellite loci to investigate how a mixed-mating system affects population genetic structure in Central American populations (N = 243 individuals) of the killifish Kryptolebias marmoratus (mangrove rivulus), 1 of 2 of the world's only known self-fertilizing vertebrates. Results were also compared with previous microsatellite surveys of Floridian populations of this species. For several populations in Belize and Honduras, population structure and genetic differentiation were pronounced and higher than in Florida, even though the opposite trend was expected because populations in the latter region were presumably smaller and highly selfing. The deduced frequency of selfing (s) ranged from s = 0.39-0.99 across geographic locales in Central America. This heterogeneity in selfing rates was in stark contrast to Florida, where s > 0.9. The frequency of outcrossing in a population (t = 1 - s) was tenuously correlated with local frequencies of males, suggesting that males are one of many factors influencing outcrossing. Observed distributions of individual heterozygosity showed good agreement with expected distributions under an equilibrium mixed-mating model, indicating that rates of selfing remained relatively constant over many generations. Overall, our results demonstrate the profound consequences of a mixed-mating system for the genetic architecture of a hermaphroditic vertebrate
Green's function for gravitational waves in FRW spacetimes
A method for calculating the retarded Green's function for the gravitational
wave equation in Friedmann-Roberson-Walker spacetimes, within the formalism of
linearized Einstein gravity is developed. Hadamard's general solution to
Cauchy's problem for second-order, linear partial differential equations is
applied to the FRW gravitational wave equation. The retarded Green's function
may be calculated for any FRW spacetime, with curved or flat spatial sections,
for which the functional form of the Ricci scalar curvature is known. The
retarded Green's function for gravitational waves propagating through a
cosmological fluid composed of both radiation and dust is calculated
analytically for the first time. It is also shown that for all FRW spacetimes
in which the Ricci scalar curvatures does not vanish, , the Green's
function violates Huygens' principle; the Green's function has support inside
the light-cone due to the scatter of gravitational waves off the background
curvature.Comment: 9 pages, FERMILAB-Pub-93/189-
PSP toxin levels and plankton community composition and abundance in size-fractionated vertical profiles during spring/summer blooms of the toxic dinoflagellate Alexandrium fundyense in the Gulf of Maine and on Georges Bank, 2007, 2008, and 2010 : 1. Toxin levels
This paper is not subject to U.S. copyright. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 103 (2014): 329–349, doi:10.1016/j.dsr2.2013.04.013.As part of the NOAA ECOHAB funded Gulf of Maine Toxicity (GOMTOX)1 project, we determined Alexandrium fundyense abundance, paralytic shellfish poisoning (PSP) toxin composition, and concentration in quantitatively-sampled size-fractionated (20–64, 64–100, 100–200, 200–500, and >500 μm) particulate water samples, and the community composition of potential grazers of A. fundyense in these size fractions, at multiple depths (typically 1, 10, 20 m, and near-bottom) during 10 large-scale sampling cruises during the A. fundyense bloom season (May–August) in the coastal Gulf of Maine and on Georges Bank in 2007, 2008, and 2010. Our findings were as follows: (1) when all sampling stations and all depths were summed by year, the majority (94%±4%) of total PSP toxicity was contained in the 20–64 μm size fraction; (2) when further analyzed by depth, the 20–64 μm size fraction was the primary source of toxin for 97% of the stations and depths samples over three years; (3) overall PSP toxin profiles were fairly consistent during the three seasons of sampling with gonyautoxins (1, 2, 3, and 4) dominating (90.7%±5.5%), followed by the carbamate toxins saxitoxin (STX) and neosaxitoxin (NEO) (7.7%±4.5%), followed by n-sulfocarbamoyl toxins (C1 and 2, GTX5) (1.3%±0.6%), followed by all decarbamoyl toxins (dcSTX, dcNEO, dcGTX2&3) (<1%), although differences were noted between PSP toxin compositions for nearshore coastal Gulf of Maine sampling stations compared to offshore Georges Bank sampling stations for 2 out of 3 years; (4) surface cell counts of A. fundyense were a fairly reliable predictor of the presence of toxins throughout the water column; and (5) nearshore surface cell counts of A. fundyense in the coastal Gulf of Maine were not a reliable predictor of A. fundyense populations offshore on Georges Bank for 2 out of the 3 years sampled.Vangie Shue was supported through the FDA and also through the Thomas Jefferson High School for Science and Technology Mentorship Program. Research support was provided by National Oceanic and Atmospheric Administration Grant NA06NOS4780245 for the Gulf of Maine Toxicity (GOMTOX) program. BAK, DJM, and DMA were partially supported by the Woods Hole Center for Oceans and Human Health through National Science Foundation Grants OCE-0430724 and OCE-0911031 and National Institute of Environmental Health Sciences Grant 1P50-ES01274201
Gene Dosage Effects at the Imprinted Gnas Cluster
Genomic imprinting results in parent-of-origin-dependent monoallelic gene expression. Early work showed that distal mouse chromosome 2 is imprinted, as maternal and paternal duplications of the region (with corresponding paternal and maternal deficiencies) give rise to different anomalous phenotypes with early postnatal lethalities. Newborns with maternal duplication (MatDp(dist2)) are long, thin and hypoactive whereas those with paternal duplication (PatDp(dist2)) are chunky, oedematous, and hyperactive. Here we focus on PatDp(dist2). Loss of expression of the maternally expressed Gnas transcript at the Gnas cluster has been thought to account for the PatDp(dist2) phenotype. But PatDp(dist2) also have two expressed doses of the paternally expressed Gnasxl transcript. Through the use of targeted mutations, we have generated PatDp(dist2) mice predicted to have 1 or 2 expressed doses of Gnasxl, and 0, 1 or 2 expressed doses of Gnas. We confirm that oedema is due to lack of expression of imprinted Gnas alone. We show that it is the combination of a double dose of Gnasxl, with no dose of imprinted Gnas, that gives rise to the characteristic hyperactive, chunky, oedematous, lethal PatDp(dist2) phenotype, which is also hypoglycaemic. However PatDp(dist2) mice in which the dosage of the Gnasxl and Gnas is balanced (either 2∶2 or 1∶1) are neither dysmorphic nor hyperactive, have normal glucose levels, and are fully viable. But PatDp(dist2) with biallelic expression of both Gnasxl and Gnas show a marked postnatal growth retardation. Our results show that most of the PatDp(dist2) phenotype is due to overexpression of Gnasxl combined with loss of expression of Gnas, and suggest that Gnasxl and Gnas may act antagonistically in a number of tissues and to cause a wide range of phenotypic effects. It can be concluded that monoallelic expression of both Gnasxl and Gnas is a requirement for normal postnatal growth and development
Two Rare Magnetic Cataclysmic Variables with Extreme Cyclotron Features Identified in the Sloan Digital Sky Survey
Two newly identified magnetic cataclysmic variables discovered in the Sloan
Digital Sky Survey (SDSS), SDSSJ155331.12+551614.5 and SDSSJ132411.57+032050.5,
have spectra showing highly prominent, narrow, strongly polarized cyclotron
humps with amplitudes that vary on orbital periods of 4.39 and 2.6 hrs,
respectively. In the former, the spacing of the humps indicates the 3rd and 4th
harmonics in a magnetic field of ~60 MG. The narrowness of the cyclotron
features and the lack of strong emission lines imply very low temperature
plasmas and very low accretion rates, so that the accreting area is heated by
particle collisions rather than accretion shocks. The detection of rare systems
like these exemplifies the ability of the SDSS to find the lowest accretion
rate close binaries.Comment: Accepted for publication in the Astrophysical Journal, vol. 583,
February 1, 2003; slight revisions and additions in response to referee's
comments; 17 pages, 6 figures, AASTeX v4.
- …
