156 research outputs found

    Gut–brain axis and neurodegeneration : State-of-the-art of meta-omics sciences for microbiota characterization

    Get PDF
    Recent advances in the field of meta-omics sciences and related bioinformatics tools have allowed a comprehensive investigation of human-associated microbiota and its contribution to achieving and maintaining the homeostatic balance. Bioactive compounds from the microbial community harboring the human gut are involved in a finely tuned network of interconnections with the host, orchestrating a wide variety of physiological processes. These includes the bidirectional crosstalk between the central nervous system, the enteric nervous system, and the gastrointestinal tract (i.e., gut\u2013brain axis). The increasing accumulation of evidence suggest a pivotal role of the composition and activity of the gut microbiota in neurodegeneration. In the present review we aim to provide an overview of the state-of-the-art of meta-omics sciences including metagenomics for the study of microbial genomes and taxa strains, metatranscriptomics for gene expression, metaproteomics and metabolomics to identify and/or quantify microbial proteins and metabolites, respectively. The potential and limitations of each discipline were highlighted, as well as the advantages of an integrated approach (multi-omics) to predict microbial functions and molecular mechanisms related to human diseases. Particular emphasis is given to the latest results obtained with these approaches in an attempt to elucidate the link between the gut microbiota and the most common neurodegenerative diseases, such as multiple sclerosis (MS), Alzheimer\u2019s disease (AD), Parkinson\u2019s disease (PD), and amyotrophic lateral sclerosis (ALS)

    Three combinations of clonidine in association with tiletamine-zolazepam for anaesthesia induction in rats: evaluation of reflexes and pain sensibility

    Get PDF
    The aim of this study was to assess the combination of tiletamine-zolazepam (Zoletil 20\uae) with three different doses of clonidine for general anaesthesia induction in rats submitted to vascular microsurgery. The evaluation of anaesthetic and analgesic effects was performed in 30 Wistar rats randomly divided into three groups and induced with Zoletil 20 [90 mg/kg Intraperitoneal (IP)] associated with three different doses of clonidine (60\u201390\u2013120 \u3bcg/kg IP). Four clinical parameters were evaluated after induction: loss of righting reflex, voluntary movement, the pedal withdrawal response, and pain sensitivity tested by pinching the tail. The combination of Zoletil with 90 and 120 \u3bcg/kg of clonidine provided a surgical anaesthesia; however, 90 \u3bcg/kg of clonidine provided the most rapid anaesthesia induction, as confirmed by data obtained by clinical evaluation of the loss of the pedal withdrawal response and the absence of the tail pinch response. The increase in dose of clonidine did not lead to a more rapid action of the \u3b12 agonist, probably due to achievement of a dose-dependent plateau

    Comparative computational analysis of SARS-CoV-2 nucleocapsid protein epitopes in taxonomically related coronaviruses

    Get PDF
    Several research lines are currently ongoing to address the multitude of facets of the pandemic COVID-19. In line with the One-Health concept, extending the target of the studies to the animals which humans are continuously interacting with may favor a better understanding of the SARS-CoV-2 biology and pathogenetic mechanisms; thus, helping to adopt the most suitable containment measures. The last two decades have already faced severe manifestations of the coronavirus infection in both humans and animals, thus, circulating epitopes from previous outbreaks might confer partial protection from SARS-CoV-2 infections. In the present study, we provide an in-silico survey of the major nucleocapsid protein epitopes and compare them with the homologues of taxonomically-related coronaviruses with tropism for animal species that are closely inter-related with the human beings population all over the world. Protein sequence alignment provides evidence of high sequence homology for some of the investigated proteins. Moreover, structural epitope mapping by homology modelling revealed a potential immunogenic value also for specific sequences scoring a lower identity with SARS-CoV-2 nucleocapsid proteins. These evidence provide a molecular structural rationale for a potential role in conferring protection from SARS-CoV-2 infection and identifying potential candidates for the development of diagnostic tools and prophylactic-oriented strategies

    Immunoinformatic analysis of the SARS-CoV-2 envelope protein as a strategy to assess cross-protection against COVID-19

    Get PDF
    Envelope protein of coronaviruses is a structural protein existing in both monomeric and homo-pentameric form. It has been related to a multitude of roles including virus infection, replication, dissemination and immune response stimulation. In the present study, we employed an immunoinformatic approach to investigate the major immunogenic domains of the SARS-CoV-2 envelope protein and map them among the homologue proteins of coronaviruses with tropism for animal species that are closely inter-related with the human beings population all over the world. Also, when not available, we predicted the envelope protein structural folding and mapped SARS-CoV-2 epitopes. Envelope sequences alignment provides evidence of high sequence homology for some of the investigated virus specimens; while the structural mapping of epitopes resulted in the interesting maintenance of the structural folding and epitope sequence localization also in the envelope proteins scoring a lower alignment score. In line with the One-Health approach, our evidences provide a molecular structural rationale for a potential role of taxonomically related coronaviruses in conferring protection from SARS-CoV-2 infection and identifying potential candidates for the development of diagnostic tools and prophylactic-oriented strategies

    Adelmidrol, in combination with hyaluronic acid, displays increased anti-inflammatory and analgesic effects against monosodium iodoacetate-induced osteoarthritis in rats

    Get PDF
    Background Osteoarthritis (OA) is a degenerative joint disease produced by a cascade of events that can ultimately lead to joint damage. The aim of this study was to evaluate the effect of adelmidrol, a synthetic palmitoylethanolamide analogue, combined with hyaluronic acid on pain severity and modulation of the inflammatory response in a rat model of monosodium iodoacetate (MIA)-induced osteoarthritis. Methods OA was induced by intra-articular injection of MIA in the knee joint. On day 21 post-MIA administration, the knee joint was analyzed. Rats subjected to OA were treated by intra-articular injection of adelmidrol in combination with sodium hyaluronate at different doses and time points after MIA induction. Limb nociception was assessed by the paw withdrawal latency and threshold measurement. Samples were examined macroscopically, histologically, and by immunohistochemistry. Results At day 21 post-MIA injection, the MIA\u2009+\u2009solvent and MIA\u2009+\u20091.0% sodium hyaluronate groups showed irregularities and fibrillation in the surface layer, a decrease in blood cells and multilayering in transition and radial zones, no pannus formation, and modified Mankin scores significantly higher than sham knees. The combination of hyaluronic acid and adelmidrol dose-dependently (adelmidrol 0.6%\u2009+\u20091.0% sodium hyaluronate and adelmidrol 2%\u2009+\u20091.0% sodium hyaluronate) reduced the histological alterations induced by MIA. Moreover, degeneration of articular cartilage, mast cell infiltration, and pro-inflammatory cytokine and chemokine plasma levels were significantly downregulated by treatment with a combination of hyaluronic acid and adelmidrol at the above doses. Conclusions Our results clearly demonstrate that the combination of hyaluronic acid and adelmidrol improves the signs of OA induced by MIA

    In vitro and in vivo studies of Cucurbita pepo L. flowers: chemical profile and bioactivity

    Get PDF
    Edible flowers consumption has increased in recent years due to their rich content of healthy phytochemicals. The aim of this study was to analyse the chemical profile of Cucurbita pepo L. flowers, and to explore their antioxidant and hypoglycaemic prop- erties. Moreover, in order to assess in vivo effects, biochemical analysis, Reactive Oxygen Metabolites (d-ROMs) and Biological Antioxidant Potential (BAP) tests were performed on mice serum. High Performance Liquid Chromatography-Diode Array Detection (HPLC-DAD) analyses revealed the presence of (Ăľ)-catechin, ()-epicatechin, rutin, and syringic acid as main constituents. 2,20- Azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and Ferric Reducing Antioxidant Power (FRAP) tests showed interest- ing results. The extract exhibited the strongest inhibitory effect on a-glucosidase (IC50 of 144.77lg/mL). In vivo results confirmed the hypoglycaemic effects, also affecting lipid metabolism but did not revealed benefits on ROS production. These results may add some information supporting the use of C. pepo flowers as func- tional foods and/or nutraceuticals

    Adelmidrol, in combination with hyaluronic acid, displays increased anti-inflammatory and analgesic effects against monosodium iodoacetate-induced osteoarthritis in rats

    Get PDF
    Background: Osteoarthritis (OA) is a degenerative joint disease produced by a cascade of events that can ultimately lead to joint damage. The aim of this study was to evaluate the effect of adelmidrol, a synthetic palmitoylethanolamide analogue, combined with hyaluronic acid on pain severity and modulation of the inflammatory response in a rat model of monosodium iodoacetate (MIA)-induced osteoarthritis. Methods: OA was induced by intra-articular injection of MIA in the knee joint. On day 21 post-MIA administration, the knee joint was analyzed. Rats subjected to OA were treated by intra-articular injection of adelmidrol in combination with sodium hyaluronate at different doses and time points after MIA induction. Limb nociception was assessed by the paw withdrawal latency and threshold measurement. Samples were examined macroscopically, histologically, and by immunohistochemistry. Results: At day 21 post-MIA injection, the MIA + solvent and MIA + 1.0% sodium hyaluronate groups showed irregularities and fibrillation in the surface layer, a decrease in blood cells and multilayering in transition and radial zones, no pannus formation, and modified Mankin scores significantly higher than sham knees. The combination of hyaluronic acid and adelmidrol dose-dependently (adelmidrol 0.6% + 1.0% sodium hyaluronate and adelmidrol 2% + 1.0% sodium hyaluronate) reduced the histological alterations induced by MIA. Moreover, degeneration of articular cartilage, mast cell infiltration, and pro-inflammatory cytokine and chemokine plasma levels were significantly downregulated by treatment with a combination of hyaluronic acid and adelmidrol at the above doses. Conclusions: Our results clearly demonstrate that the combination of hyaluronic acid and adelmidrol improves the signs of OA induced by MIA

    ROLE OF 5-LIPOXYGENASE IN THE MULTIPLE ORGAN FAILURE INDUCED BY ZYMOSAN.

    Get PDF
    Objective: This study investigated the role of 5-lipoxygenase in the pathogenesis of multiple organ failure (MOF) induced by zymosan. Design: Male mice with a targeted disruption of the 5-lipoxygenase gene (5-LOKO) and littermate wild-type (WT) controls (5-LOWT) were used to evaluate the role of 5-lipoxygenase (5-LO) in the pathogenesis of MOF. Setting: University research laboratory. Interventions and measurements: MOF was induced by peritoneal injection of zymosan (500 mg/kg i.p. as a suspension in saline) in 5-LOWT and in 5-LOKO mice. MOF was assessed 18 h after administration of zymosan and monitored for 12 days (for loss of body weight and mortality). Results: A severe inflammatory process induced by zymosan administration in WT mice coincided with the damage of lung and small intestine, as assessed by histological examination. Myeloperoxidase activity indicative of neutrophil infiltration and lipid peroxidation were significantly increased in zymosan-treated WT mice. Zymosan in the WT mice also induced a significant increase in the plasma level of nitrite/nitrate. Immunohistochemical examination demonstrated a marked increase in the immunoreactivity to ICAM-1 and P-selectin in the lung and intestine of zymosan-treated WT mice. In contrast, the degree of (a) peritoneal inflammation and tissue injury, (b) upregulation/expression of P-selectin and ICAM-1, and (c) neutrophil infiltration were markedly reduced in intestine and lung tissue obtained from zymosan-treated 5-LO deficient mice. Zymosan-treated 5-LOKO showed also a significantly decreased mortality. Conclusions: These findings clearly demonstrate that 5-LO exerts a role in zymosan-induced nonseptic shock

    Adult cardiac stem cells are multipotent and robustly myogenic: c-kit expression is necessary but not sufficient for their identification

    Get PDF
    Multipotent adult resident cardiac stem cells (CSCs) were first identified by the expression of c-kit, the stem cell factor receptor. However, in the adult myocardium c-kit alone cannot distinguish CSCs from other c-kit-expressing (c-kitpos) cells. The adult heart indeed contains a heterogeneous mixture of c-kitpos cells, mainly composed of mast and endothelial/progenitor cells. This heterogeneity of cardiac c-kitpos cells has generated confusion and controversy about the existence and role of CSCs in the adult heart. Here, to unravel CSC identity within the heterogeneous c-kit-expressing cardiac cell population, c-kitpos cardiac cells were separated through CD45-positive or -negative sorting followed by c-kitpos sorting. The blood/endothelial lineage-committed (Lineagepos) CD45posc-kitpos cardiac cells were compared to CD45neg(Lineageneg/Linneg) c-kitpos cardiac cells for stemness and myogenic properties in vitro and in vivo. The majority (~90%) of the resident c-kitpos cardiac cells are blood/endothelial lineage-committed CD45posCD31posc-kitpos cells. In contrast, the LinnegCD45negc-kitpos cardiac cell cohort, which represents 10% of the total c-kitpos cells, contain all the cardiac cells with the properties of adult multipotent CSCs. These characteristics are absent from the c-kitneg and the blood/endothelial lineage-committed c-kitpos cardiac cells. Single Linnegc-kitpos cell-derived clones, which represent only 1–2% of total c-kitpos myocardial cells, when stimulated with TGF-β/Wnt molecules, acquire full transcriptome and protein expression, sarcomere organisation, spontaneous contraction and electrophysiological properties of differentiated cardiomyocytes (CMs). Genetically tagged cloned progeny of one Linnegc-kitpos cell when injected into the infarcted myocardium, results in significant regeneration of new CMs, arterioles and capillaries, derived from the injected cells. The CSC’s myogenic regenerative capacity is dependent on commitment to the CM lineage through activation of the SMAD2 pathway. Such regeneration was not apparent when blood/endothelial lineage-committed c-kitpos cardiac cells were injected. Thus, among the cardiac c-kitpos cell cohort only a very small fraction has the phenotype and the differentiation/regenerative potential characteristics of true multipotent CSCs
    • …
    corecore