363 research outputs found
Second order brane cosmology with radion stabilization
We study cosmology in the five-dimensional Randall-Sundrum brane-world with a
stabilizing effective potential for the radion and matter localized on the
branes. The analysis is performed by employing a perturbative expansion in the
ratio rho/V between the matter energy density on the branes and the brane
tensions around the static Randall-Sundrum solution (which has rho=0 and brane
tensions +-V). This approach ensures that the matter evolves adiabatically and
allows us to find approximate solutions to second order in \rho/V. Some
particular cases are then analyzed in details.Comment: 17 pages, RevTeX4, 4 figures, final version to appear in Phys. Rev.
Power density of a bare electrodynamic tether generator
The maximum performance of bare electrodynamic tethers as power generating systems under OML-theory is analyzed. Results show that best performance in terms of power density is achieved by designing the tether in such a way to increase ohmic impedance with respect to plasma contact impedance, hence favoring longer and thinner tethers. In such condition the corresponding optimal value of the load impedance is seen to approach the ohmic impedance of the conducting tether. At the other extreme, when plasma contact impedance dominates (which is not optimal but can be relevant for some applications) optimum power generation is found by matching the load impedance with an effective tether-plasma contact impedance whose expression is derived
Three-Body Dynamics and Self-Powering of an Electrodynamic Tether in a Plasmasphere
The dynamics of an electrodynamic tether in a three-body gravitational environment are investigated. In the classical two-body scenario the extraction of power is at the expense of orbital kinetic energy. As a result of power extraction, an electrodynamic tether satellite system loses altitude and deorbits. This concept has been proposed and well investigated in the past, for example for orbital debris mitigation and spent stages reentry. On the other hand, in the three-body scenario an electrodynamic tether can be placed in an equilibrium position fixed with respect to the two primary bodies without deorbiting, and at the same time generate power for onboard use. The appearance of new equilibrium positions in the perturbed three-body problem allow this to happen as the electrical power is extracted at the expenses of the plasma corotating with the primary body. Fundamental differences between the classical twobody dynamics and the new phenomena appearing in the circular restricted three-body problem perturbed by the electrodynamic force of the electrodynamic tether are shown in the paper. An interesting application of an electrodynamic tether placed in the Jupiter plasma torus is then considered, in which the electrodynamic tether generates useful electrical power of about 1 kW with a 20-km-long electrodynamic tether from the environmental plasma without losing orbital energy
Accurate analytical approximation of asteroid deflection with constant tangential thrust
We present analytical formulas to estimate the variation of achieved deflection for an Earth-impacting asteroid following a continuous tangential low-thrust deflection strategy. Relatively simple analytical expressions are obtained with the aid of asymptotic theory and the use of Peláez orbital elements set, an approach that is particularly suitable to the asteroid deflection problem and is not limited to small eccentricities. The accuracy of the proposed formulas is evaluated numerically showing negligible error for both early and late deflection campaigns. The results will be of aid in planning future low-thrust asteroid deflection mission
The low-energy limit of AdS(3)/CFT2 and its TBA
We investigate low-energy string excitations in AdS3 × S3 × T4. When the worldsheet is decompactified, the theory has gapless modes whose spectrum at low energies is determined by massless relativistic integrable S matrices of the type introduced by Al. B. Zamolodchikov. The S matrices are non-trivial only for excitations with identical worldsheet chirality, indicating that the low-energy theory is a CFT2. We construct a Thermodynamic Bethe Ansatz (TBA) for these excitations and show how the massless modes’ wrapping effects may be incorporated into the AdS3 spectral problem. Using the TBA and its associated Y-system, we determine the central charge of the low-energy CFT2 to be c = 6 from calculating the vacuum energy for antiperiodic fermions — with the vacuum energy being zero for periodic fermions in agreement with a supersymmetric theory — and find the energies of some excited states
Strings in AdS_4 x CP^3: finite size spectrum vs. Bethe Ansatz
We compute the first curvature corrections to the spectrum of light-cone
gauge type IIA string theory that arise in the expansion of about a plane-wave limit. The resulting spectrum is shown to
match precisely, both in magnitude and degeneration that of the corresponding
solutions of the all-loop Gromov--Vieira Bethe Ansatz. The one-loop dispersion
relation correction is calculated for all the single oscillator states of the
theory, with the level matching condition lifted. It is shown to have all
logarithmic divergences cancelled and to leave only a finite exponentially
suppressed contribution, as shown earlier for light bosons. We argue that there
is no ambiguity in the choice of the regularization for the self-energy sum,
since the regularization applied is the only one preserving unitarity.
Interaction matrices in the full degenerate two-oscillator sector are
calculated and the spectrum of all two light magnon oscillators is completely
determined. The same finite-size corrections, at the order 1/J, where is
the length of the chain, in the two-magnon sector are calculated from the all
loop Bethe Ansatz. The corrections obtained by the two completely different
methods coincide up to the fourth order in . We
conjecture that the equivalence extends to all orders in and to
higher orders in 1/J.Comment: 32 pages. Published version; journal reference adde
TBA-like equations and Casimir effect in (non-)perturbative AdS/CFT
We consider high spin, , long twist, , planar operators (asymptotic
Bethe Ansatz) of strong SYM. Precisely, we compute the minimal
anomalous dimensions for large 't Hooft coupling to the lowest order
of the (string) scaling variable with GKP string size . At the leading order ,
we can confirm the O(6) non-linear sigma model description for this bulk term,
without boundary term . Going further, we derive,
extending the O(6) regime, the exact effect of the size finiteness. In
particular, we compute, at all loops, the first Casimir correction (in terms of the infinite size O(6) NLSM), which reveals only one
massless mode (out of five), as predictable once the O(6) description has been
extended. Consequently, upon comparing with string theory expansion, at one
loop our findings agree for large twist, while reveal for negligible twist,
already at this order, the appearance of wrapping. At two loops, as well as for
next loops and orders, we can produce predictions, which may guide future
string computations.Comment: Version 2 with: new exact expression for the Casimir energy derived
(beyond the first two loops of the previous version); UV theory formulated
and analysed extensively in the Appendix C; origin of the O(6) NLSM
scattering clarified; typos correct and references adde
Scattering of Giant Holes
We study scalar excitations of high spin operators in N=4 super Yang-Mills
theory, which are dual to solitons propagating on a long folded string in AdS_3
x S^1. In the spin chain description of the gauge theory, these are associated
to holes in the magnon distribution in the sl(2,R) sector. We compute the
all-loop hole S-matrix from the asymptotic Bethe ansatz, and expand in leading
orders at weak and strong coupling. The worldsheet S-matrix of solitonic
excitations on the GKP string is calculated using semiclassical quantization.
We find an exact agreement between the gauge theory and string theory results.Comment: 13 pages. v2: minor corrections, references adde
Asymptotic Bethe equations for open boundaries in planar AdS/CFT
We solve, by means of a nested coordinate Bethe ansatz, the open-boundaries
scattering theory describing the excitations of a free open string propagating
in , carrying large angular momentum , and ending on
a maximal giant graviton whose angular momentum is in the same plane. We thus
obtain the all-loop Bethe equations describing the spectrum, for finite but
large, of the energies of such strings, or equivalently, on the gauge side of
the AdS/CFT correspondence, the anomalous dimensions of certain operators built
using the epsilon tensor of SU(N). We also give the Bethe equations for strings
ending on a probe D7-brane, corresponding to meson-like operators in an
gauge theory with fundamental matter.Comment: 30 pages. v2: minor changes and discussion section added, J.Phys.A
version
QCD properties of twist operators in the N=6 Chern-Simons theory
We consider twist-1, 2 operators in planar N=6 superconformal Chern-Simons
ABJM theory. We derive higher order anomalous dimensions from integrability and
test various QCD-inspired predictions known to hold in N=4 SYM. In particular,
we show that the asymptotic anomalous dimensions display intriguing remnants of
Gribov-Lipatov reciprocity and Low-Burnett-Kroll logarithmic cancellations.
Wrapping effects are also discussed and shown to be subleading at large spin.Comment: 22 pages, expanded reference
- …
