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The dynamics of an electrodynamic tether in a three-body gravitational environment are investigated. In the 
classical two-body scenario the extraction of power is at the expense of orbital kinetic energy. As a result of power 
extraction, an electrodynamic tether satellite system loses altitude and deorbits. This concept has been proposed and 
well investigated in the past, for example for orbital debris mitigation and spent stages reentry. On the other hand, in 
the three-body scenario an electrodynamic tether can be placed in an equilibrium position fixed with respect to the 
two primary bodies without deorbiting, and at the same time generate power for onboard use. The appearance of new 
equilibrium positions in the perturbed three-body problem allow this to happen as the electrical power is extracted at 
the expenses of the plasma corotating with the primary body. Fundamental differences between the classical two-
body dynamics and the new phenomena appearing in the circular restricted three-body problem perturbed by the 
electrodynamic force of the electrodynamic tether are shown in the paper. An interesting application of an 
electrodynamic tether placed in the Jupiter plasma torus is then considered, in which the electrodynamic tether 
generates useful electrical power of about 1 kW with a 20-km-long electrodynamic tether from the environmental 
plasma without losing orbital energy. 
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Nomenclature 
magnetic field vector 
distance between the primaries 
motional electric field 
projection of E along the tether 
electrodynamic force 
specific electrodynamic force 
gravitational force 
specific gravitational force 
tether length 
spacecraft total mass 
mass of the first primary (Jupiter) 
mass of the second primary (Io) 
electron mass 
local electron density of plasmasphere 
electron charge 
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Subscripts 

sc 
1 
2 

position of the center of mass of the 
electrodynamic tether with respect to the 
center of the corotating frame 
magnitude of R 
Jupiter equatorial radius 
tether unit vector 
velocity of the plasma 
spacecraft orbital velocity 
relative velocity between the spacecraft and 
the plasmasphere 
tether width 
angle between the tether unit vector ü and 
magnetic field B 
gravitational parameter 
tether electric potential 
plasma electric potential 
angle between B and vrel 

angular velocity of revolution of the two 
primaries 
Keplerian angular velocity of revolution of 
the two primaries 
angular velocity of the body 

spacecraft 
first primary (Jupiter) 
second primary (Io) 

I. Introduction 

T HE three-body orbital dynamics of an electrodynamic tether 
(EDT) is investigated, together with power-extraction capa­

bilities when the EDT is placed in the equilibrium positions of the 
perturbed circular restricted three-body problem. 
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The orbital dynamics of EDTs have usually been investigated with 
a two-body description of the motion of the system's center of mass 
around the central body. The tether is modeled as a rigid dumbbell, 
with attitude uncorrected to its orbital dynamics. Even with such a 
simple model, complex dynamical features and nontrivial stability 
properties appear, as already outlined by many authors (see [1,2]). 
The Lorentz force coming from the interaction of the cable with the 
plasmasphere can conveniently be used for propellantless propulsion 
[3], for example in orbit raising and lowering maneuvers. Several 
applications of such a concept have been considered in the past (see 
[4-7]). Significant flight and development activities have also been 
conducted on EDT systems (TSS-1, TSS-1R, PMG, and ProSEDS). 
Furthermore, EDTs have been demonstrated to be capable of 
extracting power from space plasmas, i.e., from the plasmasphere of 
a planet or the solar wind [8]. Relevant applications at Jupiter have 
been proposed [9-12]. For these reason an EDT can seriously be 
considered as a future efficient tool for power generation and maneu­
vering in all space applications where an appropriate plasmasphere 
(intended as plasma plus magnetic field) is present [13]. 

The dynamics of an EDT in a three-body gravitational environ­
ment has received a lesser attention than the two-body case. 
Pioneering studies of tethers in the three-body environment were 
done by Colombo [14] and, later, by Farquhar [15]. These studies 
investigated a cable-connected satellite for station-keeping around a 
collinear libration point. Subsequent works were done by Misra et al. 
[16] and Wong and Misra [17,18], and recently by Peláez and 
Scheeres [19,20] and Sanjurjo-Rivo et al. [21]. A recent study lead 
by the Advanced Concept Team of the European Space Agency 
investigated the dynamics of tethered satellites at Lagrangian points 
[22]tt. The lack of studies of EDTs in the three-body is justifiable 
when we consider that in the Earth-moon system the presence of a 
third body, the moon, can be treated just like a perturbation for low-
Earth-orbit applications. This is not true when we deal with more 
general cases and with planetary systems like Jupiter. 

Jupiter offers a unique environment for an EDT, due to the 
outstanding morphology of its magnetosphere and the fast rotation of 
the planet. All around the orbit of the Galilean moon lo, a region of 
increased plasma density called the plasma torus modifies and affects 
the Jupiter magnetosphere. The presence of the plasma torus is a 
consequence of the volcanic activity of the moon lo and its strong 
tidal heating. The motion of a spacecraft within the Torus is influe­
nced by two main gravitational attractors, Jupiter and lo. Further­
more, all the Lagrangian points of the Jupiter-Io-spacecraft system 
are contained inside the torus. At first approximation, the motion of 
an EDT-spacecraft inside the torus can be described by the equations 
of the circular restricted three-body problem, with the addition of the 
electrodynamic force produced by the interaction of the EDT with the 
plasmasphere. 

In this paper we show that a whole family of new dynamical 
features appears when we study the tether dynamics by using the 
dynamical paradigm of the circular restricted three-body problem. 
Relevant consequences on power production and spacecraft maneu­
vering can be inferred, like for example the possibility to extract 
power while maintaing a quasistable position with respect to the 
corotating frame. As an example, the case of Jupiter-Io EDT system 
is considered and analyzed here in detail. 

The paper is organized as follows. The basic principles of an EDT 
operating in the generator mode are recalled, in order to show the 
relations describing the self-powering of a bare EDT. After that the 
three-body dynamical model has been derived, and the equilibrium 
positions obtained. A new family of equilibrium positions (extending 
the classic Lagrangian points) appears as a function of the electro-
dynamic force. Energy considerations lead to the evaluation of the 
electrical power that can be extracted from the environmental plasma. 
We have obtained a simplified model for the evaluation of the 
equilibrium positions, and we have verified the results with a higher 
fidelity numerical model. The model has then been applied to the 
planetary system composed by Jupiter-Io EDT, showing that 

kilowatts of useful power can be obtained by using tethers of 
moderate length, in condition of optimal matching of the load 
impedance. 

II. Power Generation Equations 
We consider a bare EDT [23] of length L and rectangular section 

w x h (tape tether), mounted on a satellite with a load impedance Zc. 
The motion of electric charges of the conductor with respect to the 
background magnetic field is responsible for a motional electric field 
(EF) E, given by: 

E = (vsc - vpl) x B (1) 

where the plasma is assumed to be frozen to the magnetic field. The 
motional EF projected along the tether line, Et = E • «, provides the 
potential that drives the electrical current flowing along the tether. 
Figure 1 shows a schematic model of the tether. 

When ohmic losses are neglected, the electric circuit equation is: 

EtL = Etz* + ZCI (2) 

where it was assumed no impedance of the plasma contactor at the 
cathode, Zc is the impedance of the load, and z* is the zero-bias 
position along the tether, measured from the anodic tip. Ohmic losses 
cannot be neglected in presence of a dense plasmasphere, but they are 
negligible for the less dense plasma of Jupiter and a low-resistance 
wire. For the plasma density of Jupiter, the tether radius is much 
less than the debye length and the electron Larmor radius and, 
consequently, electrons are collected according to the Langmuir's 
orbital motion limited (OML) model [24,25]. Under the OML 
assumptions, the collected current is a function of the tether-line 
abscissa z [23]: 

= — q n 2 — Et(z*-z) (3) 
áz X V me 

After analytic integration of Eq. (3) the current profile I(z) can be 
obtained with the condition I(z = 0) = 0, and the length-averaged 
value 7avg = (1/L) /0

L I(z) dz is given by (see [1] for the derivation): 

4vg = / o ( l - ^ ) ? 3 / 2 (4) 

where 

I0=\-qeneL^Jl^Et (5) 
3 7t y me 

and f = z*/L is the nondimensional zero-bias position. 
The power that can be extracted at the load is a function of f: 

P = ZCI2
C « Zc/a

2
vg = I0EtL(l - M3/2 (6) 

Fig. 1 Bare tether schematic (generator mode). The two graphs show 
the profiles of the current /, of the tether potential (¡>t and of the plasma 
potential <f>p as a function of tether abscissa z. 



and it has a maximum at f opt = 3/5. The optimal power condition can 
be obtained with an appropriate control of the load impedance. The 
optimal impedance Z^pt is proportional to the following set of 
parameters [1], which is variable along the trajectory as a function of 
VEt/Ne, 

zT< 
1 Et 

N„w V L 
(J) 

The Lorentz force due to the interaction of the current with the 
magnetic field is: 

Jo 
I(z) (1MXB = I&ygLBu x b (8) 

where b is the unit vector of the magnetic field vector B, and the 
current is parallel to the line element of the tether. The unit vector ü is 
assumed to have the same direction of the conventional electric 
current, pointing from the cathode to the anode. The tether current 
flow involves a particular caveat when dealing with rotating tethers, 
whereby cathode and anode reverse one another during each tether 
rotation. Substituting Eq. (4) in Eq. (8) yields: 

^ = /o(l-f?)^ LBu x b (9) 

Equation (9) shows that the Lorentz force is proportional to: 

Fel oc neBEl/2wL5/2 oc nev
l
r^B3/2wL5/2 (10) 

The scaling of the Lorentz force as a 2.5 power of the length 
enables the extraction of significant power levels from the 
plasmasphere using tethers of moderate lengths. In fact, the electrical 
energy extracted by the EDT during an infinitesimal time step is: 

^load — Ploadhvgd-t 

and the associated electrical power is: 

^el = Pel • V I e l = / 0 ( ' l - | Í\ ?'2LB(U X b) • Vre 

(ID 

(12) 

The maximum power can be obtained when the tether line «is both 
perpendicular to the magnetic field and to the relative velocity vector; 
in this situation we have (« x b) • vlA — 1 and the power is: 

-qenev^BL^J^^t(l-\^ (13) 

Like the electrodynamic force, the electrical power Pel scales as 
L5/2. 

From a thermodynamic point of view, the EDT can be seen as a 
machine capable to convert directly the kinetic energy of its motion 
into electrical energy, by virtue of the induction law. The 
environmental plasma allows the closure of the electrical circuit 
and the possibility to have a current flowing through the tether and 
possibly a load. The kinetic energy associated with the relative 
motion is: 

1 1 
" \B sin (pj 

(14) 

where E = vvelB sin<p, and (p is the angle between vrel and B. The 
efficiency of power production of the EDT can be expressed as the 
ratio between the electrical power at the load and the total available 
power: 

r¡ = - (15) 

In the following discussion we will assume the load impedance 
being actively controlled (for example by using variable resistance), 
in order to track the condition for optimal matching. 

III. EDT Three-Body Motion 

The tethered satellite is assumed to have a rectilinear rigid shape of 
length L with total mass m. The center of mass of the satellite is the 
point C and the unit vector defining its orientation is ü (Fig. 2). The 
gravitational potential acting over an element mass dm of the tether 
placed at a distance Rdm from an attracting center is given by: 

K dm (16) 

The ratio l/Rdm can conveniently be rewritten using Legendre 
polynomials: 

1 1 i oo 

J2(-^nnPn[cosy] (17) 
Rdm Ry/l + 2Xcosy + X2 Rt^o 

Substituting Eq. (17) into Eq. (16) the gravitational potential 
becomes: 

Vgr = - ^ ( l + E(- 1)"( | )V»[cosy]) (18) 

Equation (18) shows that the potential is given by the sum of a 
zeroth-order term —m/x/R corresponding to the potential of a point 
mass and a power series of the ratio L/R, where L is the tether length 
and R the distance of center of mass C of the tether system from the 
attracting primary. The ratio L/R is usually small and the 
corresponding terms negligible, but this condition does not hold for 
an extremely long tether or for a tether orbiting very close to one of 
the primaries. 

The resultant of gravitational forces can similarly be derived: 

Fgr = - ^ r R ( 1 + £ ( - D " (|)"«-(-S-[cosy]« 

- Sédeos y]Ü)\ (19) 

where the S„[cos y] are the polynomials of the series: 

Si [x] = 3x 

S2[x]=^(5x2-1) 

S3[X] = -(7J?-3X) 

S4[x] •• 
15 

(21x4 - 14x2 + 1) 

(20) 

(21) 

(22) 

(23) 

Fig. 2 Gravitational actions on the tether. 



In the limiting case when the ratio between tether length L and 
distance R from the gravitational attractor is small, the gravitational 
force coincides with the point-mass Newton law: 

L/R -> 0: Fg] R (24) 

When placed in a three-body environment the gravitational 
attractions of the two primaries Mx and M2 must be summed together. 
Here we will assume Mx > M2, and we will indicate with the 
subscripts 1 and 2 the relative distances between the tether center of 
mass from Mx and M2, respectively. The motion of the center of 
mass, expressed in the synodic frame (the frame corotating with the 
primaries), is expressed by the classical circular restricted three-body 
problem (CRTBP) equations plus the perturbation due to the EDT 
electrodynamic force: 

R + 2fí x R + fí x (fí x R ) = _ ^ l R _ ^ | R 2 + f j 
R{ R3

2 

(25) 

with the assumption of a vanishing L/R ratio. When the tether length 
is not negligible, the full gravitational force of Eq. (19) must be 
considered. The nondimensional form of Eq. (25) is: 

5-2)j = $-4(?+v2)-
Pi PI 

• v i ) + 
mdti1 (26) 

A = V ( ? + v 2 ) 2 + >72 + ?2 

/>2=V( f -V i ) 2 + i72 + f2 

(31) 

(32) 

From Eq. (31) and (32) together with Eqs. (26-28), it can be shown 
that in the unperturbed case the equilibrium points must lie in the 
intersections of two circumferences with their centers in (— v2,0) and 
(vl5 0) and radii equal to p1 and p2 respectively. 

The system of Eqs. (26-28) describes the dynamics of an active 
electrodynamic tether in a three-body case, which corresponds to a 
perturbation of the classical three-body problem, with a perturbing 
force due to the specific Lorentz force fel. 

When fel = 0, the system falls back to the case of the classical 
circular restricted three-body problem, with equilibrium positions 
consisting of the well-known five Lagrangian points. Small 
oscillations around Lagrangian points are expressed by the usual 
linear-variational solution of Szebehely [26]: 

cos (s tí) + 

+ 
C2 

C2 

cos(s20 + 
s2 

s2 

sin (s if) 

sin(s2t) (33) 

¿7 + 2f = rj -• — * ] • 

Pi 

V2 , 

p\ 

rc\,y 
mdQ} 

? = p\ pi mdQ2 

(27) 

(28) 

where (£, rj, f) are the nondimensional coordinates of the orbital 
position. Length, mass, and time have been, respectively, non-
dimensionalized with the distance between primaries d, the total 
mass of the planetary system Mx + M2, and the inverse of the mean 
angular velocity of the primaries 1/Q. Figure 3 shows the geometry 
of the synodic frame with the nondimensional coordinates (£, rj) 
centered in the center of mass of the planetary system (with 
Mi > M2). 

The nondimensional mass parameters of the two primaries are: 

Vt = 1 — v2 = 
M i 

M, + M 2 

V 2 : 
Mo 

Mx + M2 

(29) 

(30) 

and the nondimensional distances of the center of mass of the 
spacecraft from the two primaries are: 

Geometric , 
¿/-radius/ 
circle 

Fig. 3 Geometry of synodic plane with nondimensional quantities. 

Eigenfrequencies at triangular points have the closed form 

sh2 = Jm[yJ(\/2)(-\ ± Vl - 27v2(l - v2))] • Q [rad/s] (34) 

expressing a motion that is a combination of short-period terms, 
associated with the eigenfrequency sx and long-period terms, 
associated with s2. The two characteristic eigenfrequencies are a 
function of the planetary system parameter v2. 

The system of Eqs. (26-28) has no closed analytical solution, and a 
numerical analysis is required to solve for the trajectories. However, 
key features of this dynamical system can be derived with a 
qualitative dynamics analysis. In the following section equilibrium 
positions of the perturbed CRTBP are obtained, and the EDT 
equilibrium is analyzed. 

IV. Equilibrium Positions 
When the EDT orbits in a three-body environment with a 

plasmasphere, the Lorentz force [Eq. (9)] perturbs the natural three-
body motion and equilibrium positions different than Lagrangian 
points appear. When placed in these positions, the satellite can stay in 
equilibrium with respect to the synodic frame, because of the nonzero 
electrodynamic force acting on the tether. 

The equilibrium positions in the perturbed case are the singular 
points (null acceleration and velocity) of the dynamical system 
described by Eqs. (26-28). The singular points are the solutions of 
the following equations: 

PÍ 
^(f+v2)+^(f-v1) = f + / t 

Pi 

V 1 v2 

7i
11 + 72

11: i + f„ 

vl V-, 

Pi pi ••ft 

(35) 

(36) 

(37) 

where f^, fn and f¡- are the three nondimensional components of 
the perturbing force, 

(/*./„./?) = (FeU/md£l2, F^/mdSi2, FAJmdQ}) (38) 

with components expressed in the synodic frame. From the system of 
Eqs (35-37) the locations of the equilibrium positions (£0, rj0, f0) can 
be readily found, as a function of the perturbing electrodynamic 



force. Equation (37) shows that the equilibrium positions outside the 
orbital plane of the two primaries are theoretically possible: 

fo = h 
vi/pl + vjpl 

(39) 

When the out-of-plane force vanishes f$ = 0, the equilibrium 
positions lie on the orbital plane f0 = 0. In our simplified model of 
the electrodynamic force for the EDT we have assumed f$ & 0; thus, 
no equilibrium positions exists in the out-of-plane region. 

Making the substitution r = l/p\ and x — l//°2 m e two~ 
dimensional system of Eqs. (35) and (36) yields: 

* + /* 
ri+fn 

(40) 

The determinant of the matrix on the left-hand side of Eq. (40) is 
vlv2r], and for r¡ / 0 the matrix can be inverted to obtain (r, x). 
This corresponds to searching equilibrium positions outside the 
axis r¡ = 0 that joins the two primaries. Solving Eq. (40), the two 
distances pu p2 of the equilibrium point from the two primaries are 
found as: 

Pi : 
VXY) 

Vil + ftf + fAvi - %) 
(41) 

where px = 1 and p2 = V2 — 2 cos a. Equation (47) is the 
nondimensional force that the tether (or any other thrust-device) must 
supply to remain stationary with respect to the synodic reference 
frame at a given angular position a in the circle joining the triangular 
points with the second primary. In dimensional units the magnitude 
of the force is: 

: mdQ ffi -2+/l- • mdQ2v2p2 
1 

A' 
(48) 

Equation (48) shows that no external force is required to maintain 
an object at \a| = 60 deg, that is at a triangular Lagrangian point, as 
expected. Figure 4 shows the two components f%, fv of the 
electrodynamic force from Eq. (47) of the nondimensional force vs 
the angle a, for all admissible values of the mass parameter 
0 < v2 < 1/2. Note that a null external force is required at the 
Lagrangian triangular points (a = 60°, a = 300°). Singular 
conditions occur at a = 0° = 360°, where the angular position of 
the second primary is reached by the spacecraft. 

Figure 5 shows the nondimensional force as a vector field 
superimposed to the synodic plane of the Jupiter-Io system (v2= 
4.7 x 10~5). In the figure Jupiter is placed at (—v2, 0), Io at (vl5 0), 
and the five Lagrangian points are marked with a cross. The circle 
centered in Jupiter and joining Io with the triangular points is marked 

P2 = 
V2Y] 

W ~ ft;1! + fÁv2 + %) 
(42) 

For (f^fjj) = (0,0) the external force vanishes, the distances 
from the primaries become unitary pl= p2 = 1, and the equilibrium 
positions are the classical triangular Lagrangian points: (£0, r¡0) = 
( l / 2 - v 2 , ± V 3 / 2 ) . 

For (/*£, fv) = (/*£, 0) the force acts purely in a direction parallel to 
the synodic £ axis. In this case, Eqs. (41) and (42) show that the 
dependence ofpi, p2 on the £ coordinate disappears and an analytical 
solution of the equilibrium points (£0, r¡0) can be readily obtained: 

?0: v2 + 
i / i-v2 y /3 i / v2 \ 

2\l-v2+ft) 2\v2-fJ 

2/3 
(43) 

>7o= 

V-v2+fJ L2 + 2\,l-v2+/J 2\v2-fJ 
2/3" 

(44) 
For (f^, fy) / (0,0) the perturbing components are both different 

from zero; no closed form exist, and the equilibrium position must be 
derived by means of a numerical method. 

Interesting properties of the equilibrium locations can be inferred 
when we shift to a polar coordinate system (ra,a), by making 
the substitutions: £ = ra cosa — v2 and r¡ = ra sin a, with ra the 
nondimensional radial distance from the first primary Mx (see Fig. 3). 
In this new set of coordinates the distances from the primaries take 
the form: 

P\ 

Pi = Jr2
a + \-2ra( 

(45) 

(46) 

On the circle centered in Mx and joining the triangular points 
with the second primary the radius ra is unitary, ra = 1, and the 
components of the force necessary for maintaining the equilibrium 
positions take the simple expression: 

- (¿-0 COS Of — 1 

sin a 
(47) 

0 60 120 180 240 300 360 
a [deg] 

a) / f 

120 180 240 
a [deg] 

360 

b)/„ 
Fig. 4 Graphs of a) nondimensional force component f^ and b) fn 
required to maintain an equilibrium position with respect to the synodic 
frame as a funciton of the angle a. 
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Fig. 5 Nondimensional force components (/%,/,,) required to stay in 
equilibrium in the synodic frame at locations (marked by dots) different 
than classical Lagrangian points. 

with a dotted circle. Each arrow in the figure shows the direction and 
the magnitude (with different scales as explained later) of electrody-
namic force required to keep the spacecraft in equilibrium with 
respect to the synodic frame at locations different from Lagrangian 
points. Two main zones can be identified. The first one is a narrow 
zone encircling the circle centered in Jupiter and joining Io with the 
triangular points. In this region the force has its smaller magnitude (a 
scale x2500 has been used for visualization) and has a nonnull 
tangential component. The second region is the remaining part of the 
synodic plane, which is cut into an inner and an outer zone by the 
orbit of Io. In this region the force is predominantly directed in the 
radial direction, pointing outward in the inner region (0 < r < 1) and 
pointing inward in the outer region (r > 1). 

V. Self-Powering at Equilibrium Positions 

When the EDT is placed at an equilibrium position away from a 
Lagrangian point, a nonzero electrodynamic force acts upon it, and 
the EDT can supply electrical power to the spacecraft itself. The 
region of allowed equilibria for technologically feasible tethers lies 
inside the narrow region encircling the circle centered in Mx and 
joining the triangular points with the second primary. When 
M2 « M j , as in all practical cases of the solar system, the equili­
brium points are all placed very close to the orbital path of the second 
primary, and their effective location is a function of environmental 
parameters (i.e., plasmasphere and planetary system), tether size, and 
plasma collection device. 

In a general case, the attitude of the tether affects the magnitude 
and orientation of the electrodynamic force, and consequently the 
location of the equilibrium points. Assuming the EDT is self-
balanced [27], the force vector acts on the center of mass of the 
system, and no net electrodynamic torques affect the orientation of 
the system. Under this hypothesis the equilibrium locations of the 
EDT can be obtained by considering only the effect of electrody­
namic force, substituting the electrodynamic force [Eq. (8)] in the 
equilibrium equations of the three body [Eqs. (35-37)]. A nonlinear 
least-squares algorithm has been used to find the roots of the system 
formed by Eqs. (8) and (35-37). A family of equilibrium locations 
has been obtained, stemming from the unperturbed triangular 
points L4 and L5. Numerical examples are shown in the following 
paragraph. 

A useful simplified model has been derived to describe the 
powering conditions, under the following hypotheses: 1) the tether 
system is contained in the synodic plane (£, r¡) and points toward Mx; 
2) the tether system is above the stationary orbit of Mx; 3) aligned and 
centered magnetic field generated by the first primary and rotating 
with the angular velocity of the primary £i x; and 4) orientation of B is 
from north to south (as in Jupiter and Saturn), thus, in the synodic 
plane the unit vector of B is b = (0 ,0,-1) . 

Under these simplifications, when the tether is at equilibrium 
(meaning that it has a zero velocity with respect the synodic frame), 
the projection of the motional electric field on the tether is simply 
given by: 

Et = B-d-(Ql-Q + Qv2cosa) (49) 

The Lorentz force vector, with its components expressed in the 
synodic frame, has the following simple expression, which repre­
sents a counterclockwise force, tangential to the orbit of the second 
primary mass: 

s>-Fel = Feluuxb = F e l ( - sin a; cos a; 0) (50) 

where the force magnitude is given by: 

F e i = G f fi¥) 0 - ̂ )?3/2(«^5/2)(«.5^) (3D 
In these expressions the tether line ü = (cos a; sin a; 0) takes into 

account the direction of the current, which is imposed by the 
motional electric field pointing outward. 

As shown previously a nonzero electrodynamic force is required 
to keep the EDT system in an off-Lagrangian equilibrium position. 
The scalar product of this force with the velocity relative to the 
plasma gives the ideal electrical power generated. 

Under the hypotheses of the simplified model the ideal power for a 
tether placed at an angle a0 along the orbit of the second primary is: 

p i d = I^LBdiQ -Qx-Q cosa0v2) (52) 

In the two-body case, the mass parameter v2 vanishes and Eq. (52) 
simplifies to: 

Pid = I,vgLBd(Q-Ql) (53) 

From the comparison of simplified expressions Eqs. (52) and (53), 
some important differences between the classical two-body case and 
the three-Body case can be inferred. In the two-body case the ideal 
power is simply driven by the difference (Q — Qx) between the 
orbital and plasma angular velocities. In the three-body case the ideal 
power is reduced by the small term cos a0v2. The reduction term is 
of geometrical nature, and is due to the displacement between the 
centers of rotations of the plasmasphere and the corotating frame. 
The reduction term reaches the maximum value of 0.5 only in the 
limiting case when the planetary system has Mx = M2 and the 
equilibrium point reaches a0 ^ 0 at the location of the second 
primary. In all cases of practical relevance within the solar system, the 
mass parameter is always small, v2 < 10~3 (except for system of 
asteroids), and the reduction of power due to the three-body effect is 
negligible. As a result, the power obtained in the three-body case is of 
the same order of magnitude of the two-body case, but has the 
additional feature of keeping the spacecraft at an equilibrium point 
without deorbiting. 

VI. EDT in the Jupiter Plasma Torus 
By using the model described in the previous sections, the 

dynamics of an EDT satellite inside the Jupiter plasma torus has been 
studied as a special case. Jupiter offers several attractive advantages 
for EDTs, due to its high rotation rate, strong magnetic field, and 
nonnegligible plasma density. The presence of the plasma torus all 
around the Io's orbit makes this region an attractive location for an 
EDT, both for power generation and propellantless maneuvers. High 
power levels (kilowatts and more) can be obtained by means of an 
EDT in the Io torus. These power levels could be of great interest for 
Jovian missions, which are always handcuffed by the scarcity of 
power. 

The Jupiter magnetic field rotates at the same angular velocity of 
the planet, with velocity vB = £2xr, where £2X ^ 1.76 x 10~4 rad/s 



is the Jupiter angular rotation rate and r is the distance in the 
equatorial plane. Because of the high rotation rate of the planet, the 
stationary quote is relatively low at 2.238 Rj, and the velocity of the 
mangetic field at Io's orbit (5.9 Rj) is about 74 km/s . As a 
consequence, a spacecraft co-orbiting on the same orbital path of Io 
(vsc & 17.3 km/s) has a velocity relative to the Jupiter's magnetic 
field vm\ & 57 km/s , that results in a motional electric field E & 
0.1 V / m for a local magnetic field 5 ^ 2 x 10~6 T. The resulting 
electrodynamic force for a spacecraft placed in that location is a 
thrust force directed along the orbital velocity of the spacecraft. 

An aligned dipolar model has been used for the Jupiter magnetic 
field: 

B ( r ) = ^[3(m • r)r - m] (54) 

where m = fimR3jth is the magnetic dipole moment vector of the 
planet, m is its unit vector, ¡im is the intensity of the dipole [Tesla], Rj 
is the planet equatorial radius, and r is the position vector of the 
spacecraft. 

The electron density Ne in the torus is derived from the Divine and 
Garrett model [28], shown in Fig. 6 as a function of the radial distance 
from Jupiter. The locations of Io and of the four inner moonlets are 
marked by vertical lines in the figure. The presence of the plasma 
torus can be inferred from the electron density increase around the Io 
orbit at 5.9 Rj. 

The expressions of equilibrium locations given by the system of 
Eqs (35-37) plus Eqs. (50) and (51) have been used to size tethers 
capable of maintaining the spacecraft in equilibrium in the corotating 
frame of the Jupiter-Io system. The angle a0 identify s the equilibrium 
position of the tether on the circle centered in Jupiter and joining Io 
with the triangular points. It has been numerically determined for a 
set of cases as a function of the parameters L,w,m, that are the tether 
length, tether width, and spacecraft mass, respectively. As expected, 
we found that the EDT parameters influence the magnitude of the 
force and, consequently, the location of the equilibrium point. 
Figure 7 shows for a 5 cm width tape tether the equilibrium angle a0 

vs the spacecraft mass ranging from 200 to 1200 kg, for five tether 
lengths L = 8 ,10 ,20 ,30 ,40 km. As can be seen from Fig. 7, a short 
tether is sufficient to stay in equilibrium near a triangular point. The 
more the position moves away from a triangular point toward the 
second primary (Io), the longer is the tether required or the smaller 
the satellite mass. This in turn implies that a greater electrodynamic 
force must be exerted to stay near the second primary body. For 
example, a tether with a constant length of 10 km, and a suitable 
spacecraft mass can have equilibrium positions within the range 
a = 34 to 52°. Using a controlled variable-length tether and a 
constant-mass spacecraft, the equilibrium positions can be moved in 
region very close to the Io's orbital path and inside the plasma torus. 

70, 

60 

50 

40 

[Tether Width = 5 cm] 

_Ajpha = 6Q deg : Jrjangularjx>mt _ 

200 400 600 800 
m [kg] 

1000 1200 

Fig. 7 Equilibrium locations of an EDT as a function of the angle a in 
the Jupiter-Io system, on the orbital path of the second primary (Io). 

The equilibrium positions coincide with the classical triangular 
points at a = ± 6 0 deg only when the electrodynamic force is equal 
to zero. 

The useful power extracted by the EDT at equilibrium is shown in 
Fig. 8, for the librating tether case. The ideal power given by Eq. (12) 
can be converted into about 30% for a librating tether, and 20% for a 
rotating tether (see [1] for details). The power is proportional to the 
tether length, with a law P oc L5//2, as mentioned earlier and also 
shown in this figure. Kilowatt level of useful power can be delivered 
by the EDT to the spacecraft, by extracting the energy from the 
Jupiter plasmasphere. 

VII. Numerical Simulations 
A set of numerical simulations with an upgraded 3D model was 

carried out. This model integrates the 3D orbital dynamics of a rigid 
dumbbell satellite in the three-body system [as described by 
Eq. (25)], plus the two angular degrees of freedom of its attitude 
dynamics. The two attitude angles evolve under the effect of the 
external gravitational torques of the two primaries. The numerical 
integration of the governing equations is carried out with a standard 
Adam-Bashforth-Moulton llth-order predice-evaluate derivatives 
correct-evaluate derivatives routine [29]. A detailed description of 
the code implementing this model, together to its validation for a set 
of relevant cases of both orbital and attitude motion, can be found in 
[22]. A tilted dipolar magnetic field of Jupiter is considered to model 
the perturbing effects due to the oscillating field. The Divine and 

Fig. 6 Electron density at Jupiter according to Divine and Garrett 
model (adapted from [28]). 
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Fig. 8 Useful power at equilibrium for a librating tether vs spacecraft 
mass. 
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Fig. 9 Graphs of a) EDT at equilibrium in the Jupiter-Io system, and 
b) small oscillations around the equilibrium position. 

Garrett model [28] is adopted for the plasma electron density. The 
higher fidelity model confirmed the results obtained with the 
simplified model, finding that the EDT can remain in equilibrium at 
off-Lagrangian locations. Several values of mass, length, and width 
were considered, in order to identify the equilibrium position for each 
configuration. 

Figure 9a shows a 20 km tether of 5 cm tape width and a 600 kg 
mass spacecraft in equilibrium in the corotating frame of Jupiter and 
lo, for a simulation time t = 40r r e v & 70.76 days (Io's Trev = 1.77 
days). The position of the spacecraft is at a0 = 29.63°, marked with 
the arrow-tail sign in the figure. The simplified model predicts an 
equilibrium position at a0 = 29.75°, in accordance with the higher 
fidelity model. Jupiter and lo are to scale, and their triangular points 
are also marked in the figure. Figure 9b depicts small oscillations 
around the equilibrium point that exhibits a motion characterized by 
two eigenfrequencies, analogous to the unperturbed motion around 
the natural Lagrangian points. The two eigenfrequencies of the 
classical circular restricted three-body problem [26] are expressed by 
Eq. (34). 

A Lorentz force of about 0.06 N is exerted on the system, 
producing a useful power of about 1130 W for onboard use (see 
Fig. 10). The perturbation due to the other Galilean satellites is 
always smaller than this electrodynamic force. The main pertur­
bation is given by the attraction of Europa and Ganymede, being in 
the worst case 1 order of magnitude less than the electrodynamic 
force. However, the effect of the other moons could not be com­
pletely neglected because of the Laplace resonance 1:2:4 between the 
orbital periods of lo, Europa, and Ganymede, that can lead to a 
pumping effect to a satellite placed on the lo orbit. These kind of 
effects are not addressed in the present study. Numerical simulations 
with a four-body simulator have revealed that equilibrium can be 
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Fig. 10 Graphs of a) electrodynamic force, and b) generated power vs 
orbital revolutions (Io's Jrev = 1.77 days) by a 20-km EDT at 
equilibrium at Jupiter obtained with the higher fidelity model 
EDT3BODY. These results are in accordance with the simplified model, 
which gives Fel = 0.064 N and Pu = 1082 W. 

reached also in the perturbed case and the equilibrium is disrupted 
after a long period of time. 

VIII . Conclus ions 

The Lorentz force produced by an electrodynamic tether placed 
inside the plasmasphere of a three-body planetary system has been 
considered, with a focus on system dynamics and power generation 
at equilibrium points. The Lorentz force produced by the tether 
through the interaction with the superrotating plasma sphere perturbs 
the natural Lagrangian equilibrium points, and new equilibrium 
positions appears with respect to the synodic frame corotating with 
the primary bodies. The equilibrium is among the two gravitational 
forces of the two primaries, the inertial forces and the local Lorentz 
force. 

The results of simplified model developed to derive the equilibria 
locations in the synodic plane shows that for technologically feasible 
tethers those points are located along the circle centered in the first 
primary and joining the triangular points with the second primary. 
Differently from the two-body case, in the three-body scenario an 
EDT can be placed at equilibrium position and at the same time 
generate electrical power, without deorbiting. The electrical power is 
generated at the expense of the corotating plasma energy. 

A higher fidelity numerical model confirmed the presence of 
equilibrium positions and the possibility to place an electrodynamic 



tether in their neighborhood while extracting power from the 
environmental plasma. 

The present analysis has been applied to the Jupiter-Io system, 
where the presence of the plasma torus make this region an attractive 
place for an EDT to operate. An EDT in the plasma torus can generate 
in a continuous way kilowatts of useful power (with a tether length of 
order 20 km and more), that can be used on board the spacecraft. 

Acknowledgment 
The present research was supported by the Ariadna research 

contract 07/4201 of the Advanced Concept Team of the European 
Space Agency/European Space Research and Technology Centre 
with Dario Izzo as Technical Monitor of the contract. 

References 
Bombardelli, C , Lorenzini, E. C, and Sanmartín, J. R., "Jupiter Power 
Generation with Electrodynamic Tethers at Constant Orbital Energy," 
Journal of Propulsion and Power, Vol. 25, No. 2, March-April 2009, 
pp. 415^23. 
doi:10.2514/1.38764 
Peláez, J., Lorenzini, E. C, Lopez-Rebollal, O., and Ruiz, M., "A New 
Kind of Dynamic Instability in Electrodynamic Tethers," Advances in 
Astronautical Sciences, Vol. 105, 2000, pp. 1367-1386. 
Dobrowolny, M., Arnold, D., Colombo, G., and Grossi, M., "Mecha­
nisms of Electrodynamic Interactions with a Tethered Satellite System 
and the Ionosphere," Reports in Radio and Geoastronomy, Vol. 6, 
Aug. 1979. 
Estes, R. D., Lorenzini, E. C, Sanmartín, J. R., Peláez, J., Martinez-
Sanchez, M., Johnson, C. L., and Vas, I. E., "Bare Tethers for 
Electrodynamic Spacecraft Propulsion," Journal of Spacecraft and 
Rockets, Vol. 37, No. 2, March-April 2000, pp. 205-211. 
doi:10.2514/2.3567 
Takeichi, N., "Practical Operation Strategy for Deorbit of an 
Electrodynamic Tethered System," Journal of Spacecraft and Rockets, 
Vol. 43, No. 6, Nov.-Dec. 2006, pp. 1283-1288. 
doi:10.2514/l.19635 
Johnson, L., Estes, R. D., Lorenzini, E. C , Martinez-Sanchez, M., and 
Sanmartín, J. R., "Propulsive Small Expendable Deployer System 
Experiment," Journal of Spacecraft and Rockets, Vol. 37, No. 2, 2000, 
pp. 173-176. 
doi:10.2514/2.3563 
Gilchrist, B. E., Bilen, E., Sven, G., and Johnson, L., "Space 
Electrodynamic Tether Propulsion Technology: System Considerations 
and Future Plans," AIAA/ASME/SAE/ASEE Joint Propulsion Confer­
ence and Exhibit, 35th, AIAA, Reston, VA, 1999. 
Alfven, H., "Spacecraft Propulsion: New Methods," Science, Vol. 176, 
No. 4031, April 1972, pp. 167-168. 
doi: 10.1126/science. 176.4031.167 
Gabriel, S. B., Jones, R. M., and Garrett, H. B., "Alfven Propulsion at 
Jupiter," International Conference on Space Tethers for Science in the 
Space Station Era, edited by L. Guerriero, and I. Bekey, Vol. 14, NASA, 
Oct. 1987. 
Sanmartín, J. R., and Lorenzini, E. C , "Exploration of Outer Planets 
Using Tethers for Power and Propulsion," Journal of Propulsion and 
Power, Vol. 21, No. 3, May-June 2005, pp. 573-576. 
doi:10.2514/l.10772 
Sanmartín, J. R., Charro, M., Bramanti, C , Bombardelli, C , Lorenzini, 
E. C , and Garrett, H. B., "Electrodynamic Tether Microsats at the Giant 
Planets," Advanced Concept Team ESA, Tech. Rept. 05/3203, 
Sept. 2006. 

Bombardelli, C, Lorenzini, E. C, Curreli, D., Sanjurjo-Rivo, M., 
Lucas, E, and Lara, M., "Io Exploration with Electrodynamic Tethers," 
AIAA/AAS Astrodynamic Specialist Conference, AIAA, Reston, VA, 
2008. 
Penzo, P., "A Survey of Tether Applications to Planetary Exploration," 
Tethers in Space; Proceedings of the International Conference, edited 
by P. Bainum, I. Bekey, L. Guerriero, and P. Penzo, NASA, Sept 1987. 
Colombo, G., "The Stabilization of an Artificial Satellite at the Inferior 
Conjunction Point of the Earth-Moon system," Smithsonian 
Astrophysical Observatory, Special Rept. 80, Sept. 1961. 
Farquhar, R. W., "The Control and Use of Libration-Point Satellites," 
NASATR R-346, Sept. 1970. 
Misra, A. K., Bellerose, J.,Modi, V J./'Dynamics of aTethered System 
Near the Earth-Moon Lagrangian Points," Advances in Astronautical 
Sciences, Vol. 109, AIAA, Reston, VA, 2001, pp. 415^35. 
Wong, B., and Misra, A. K., "Dynamics of a Multi-Tethered System 
Near the Sun-Earth Lagrangian Point," Vol. 13th AAS/AIAA Space 
Flight Mechanics Meeting, AIAA, Reston, VA, Feb. 2003, pp. 1675-
1694. 
Wong, B., and Misra, A. K., "Dynamics of a Libration Point Multi-
Tethered System," Proceedings of 2004 International Astronautical 
Congress, IAC Paper 04-A.5.09, 2004. 
Peláez, J., and Scheeres, D. J., "A Permanent Tethered Observatory at 
Jupiter. Dynamical Analysis," AAS/AIAA Space Flight Mechanics 
Meeting, AIAA, Reston, VA, Jan.-Feb. 2007, pp. 1307-1330. 
Peláez, J., and Scheeres, D. J., "On the Control of a Permanent Tethered 
Observatory at Jupiter," AAS/AIAA Astrodynamics Specilist Confer­
ence, AIAA, Reston, VA, Aug. 2007, pp. 1835-1858. 
Sanjurjo-Rivo, M., Lucas, F , Peláez, J., Bombardelli, C , Lorenzini, E. 
C, Curreli, D., Sheeres, D. J., and Lara, M., "On the Dynamics of a 
Tethered System Near the Collinear Libration Point," AIAA/AAS 
Astrodynamic Specialist Conference, AIAA Paper 2008-7380, 2008. 
Peláez, J., Sanjurjo-Rivo, M., Lara, M., Lorenzini, E. C, Curreli, D., 
Sheeres, D. J., Bombardelli, C , and Izzo, D., "Dynamics and Stability 
of Tethered Satellites at Lagrangian Points," Tech. Rept. 07-4201, 
Advanced Concept Team ESA, Nov. 2008, 
Sanmartín, J. R., Martinez-Sanchez, M., and Ahedo, E., "Bare Wire 
Anodes for Electrodynamic Tether," Journal of Propulsion and Power, 
Vol. 9, 1993, pp. 352-320. 
doi: 10.2514/3.23629 
Mott-Smith, H. M., and Langmuir, I., "The Theory of Collectors in 
Gaseous Discharges," Physical Review, Vol. 28, No. 4, 1926, pp. 727-
763. 
doi:10.1103/PhysRev.28.727 
Chen, F F , "Langmuir Probe Analysis for High Density Plasmas ," 
Physics of Plasmas, Vol. 8, No. 6, June 2001, pp. 3029-3041. 
doi:10.1063/l.1368874 
Szebehely, V, "Motion near the Equilibrium Points," Theory of Orbits: 
The Restricted Problem of Three Bodies, Academic Press, New York, 
1967, pp. 231-308. 
Peláez, J., "Self Balanced Electrodynamic Tethers," AIAA/AAS 
Astrodynamics Specialist Conference and Exhibit, AIAA Paper 2004-
5309, Aug. 2004. 
Divine, N., and Garrett, H. B., "Charged Particle Distributions in 
Jupiter's Magnetosphere," Journal of Geophysical Research, Vol. 88, 
Sept. 1983, pp. 6889-6903. 
doi:10.1029/JA088iA09p06889 
Shampine, L. F , "Numerical Solution of Ordinary Differential Equa­
tions," Chapman and Hall, New York, 1994. 


