1,924 research outputs found
Magnetic helicity in magnetohydrodynamic turbulence with a mean magnetic field
A computational investigation of magnetic helicity of the fluctuatingmagnetic fieldHm in ideal and freely decaying three‐dimensional (3‐D) magnetohydrodynamics (MHD) in the presence of a uniform mean magnetic field is performed. It is shown that for ideal 3‐D MHDHm, which is a rugged invariant in the absence of a mean magnetic field [Frisch et al., J. Fluid Mech. 77, 796 (1975)], decays from its initial value and proceeds to oscillate about zero. The decay of Hm is shown to result from the presence of a new ‘‘generalized’’ helicity invariant, which includes contributions from the uniform magnetic field. The loss of invariance of Hm will diminish the effects of inverse transfer of Hm on freely decaying turbulence. This is demonstrated in a discussion of the selective decay relaxation process
Spin-polarization-induced structural selectivity in Pd and Pt () compounds
Spin-polarization is known to lead to important {\it magnetic} and {\it
optical} effects in open-shell atoms and elemental solids, but has rarely been
implicated in controlling {\it structural} selectivity in compounds and alloys.
Here we show that spin-polarized electronic structure calculations are crucial
for predicting the correct crystal structures for Pd and Pt
compounds. Spin-polarization leads to (i) stabilization of the structure
over the structure in PtCr, PdCr, and PdMn, (ii) to the
stabilization of the structure over the structure in PdCo
and to (iii) ordering (rather than phase-separation) in PtCo and PdCr.
The results are analyzed in terms of first-principles local spin density
calculations.Comment: 4 pages, REVTEX, 3 eps figures, to appear in PR
Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence
Magnetohydrodynamic (MHD) turbulence in the solar wind is observed to show
the spectral behavior of classical Kolmogorov fluid turbulence over an inertial
subrange and departures from this at short wavelengths, where energy should be
dissipated. Here we present the first measurements of the electric field
fluctuation spectrum over the inertial and dissipative wavenumber ranges in a
plasma. The inertial subrange is observed and
agrees strikingly with the magnetic fluctuation spectrum; the wave phase speed
in this regime is shown to be consistent with the Alfv\'en speed. At smaller
wavelengths the electric spectrum is softer and is consistent
with the expected dispersion relation of short-wavelength kinetic Alfv\'en
waves. Kinetic Alfv\'en waves damp on the solar wind ions and electrons and may
act to isotropize them. This effect may explain the fluid-like nature of the
solar wind.Comment: submitted; 4 pages + 3 figure
Dynamo generated field emergence through recurrent plasmoid ejections
Magnetic buoyancy is believed to drive the transport of magnetic flux tubes
from the convection zone to the surface of the Sun. The magnetic fields form
twisted loop-like structures in the solar atmosphere. In this paper we use
helical forcing to produce a large-scale dynamo-generated magnetic field, which
rises even without magnetic buoyancy. A two layer system is used as
computational domain where the upper part represents the solar atmosphere.
Here, the evolution of the magnetic field is solved with the stress--and--relax
method. Below this region a magnetic field is produced by a helical forcing
function in the momentum equation, which leads to dynamo action. We find
twisted magnetic fields emerging frequently to the outer layer, forming
arch-like structures. In addition, recurrent plasmoid ejections can be found by
looking at space--time diagrams of the magnetic field. Recent simulations in
spherical coordinates show similar results.Comment: 4 pages, 8 figures, To appear in the proceedings of the IAU273
"Physics of Sun and Star Spots
On contribution of three-body forces to interaction at intermediate energies
Available data on large-angle nucleon-deuteron elastic scattering
below the pion threshold give a signal for three-body forces. There is a
problem of separation of possible subtle aspects of these forces from off-shell
effects in two-nucleon potentials.
By considering the main mechanisms of the process, we show qualitatively that
in the quasi-binary reaction with the final spin singlet
NN-pair in the S-state the relative contribution of the 3N forces differs
substantially from the elastic channel.
It gives a new testing ground for the problem in question.Comment: 9 pages, Latex, 3 Postscript figure
Relativistic Proton Production During the 14 July 2000 Solar Event: The Case for Multiple Source Mechanisms
Protons accelerated to relativistic energies by transient solar and
interplanetary phenomena caused a ground-level cosmic ray enhancement on 14
July 2000, Bastille Day. Near-Earth spacecraft measured the proton flux
directly and ground-based observatories measured the secondary responses to
higher energy protons. We have modelled the arrival of these relativistic
protons at Earth using a technique which deduces the spectrum, arrival
direction and anisotropy of the high-energy protons that produce increased
responses in neutron monitors. To investigate the acceleration processes
involved we have employed theoretical shock and stochastic acceleration
spectral forms in our fits to spacecraft and neutron monitor data. During the
rising phase of the event (10:45 UT and 10:50 UT) we find that the spectrum
between 140 MeV and 4 GeV is best fitted by a shock acceleration spectrum. In
contrast, the spectrum at the peak (10:55 UT and 11:00 UT) and in the declining
phase (11:40 UT) is best fitted with a stochastic acceleration spectrum. We
propose that at least two acceleration processes were responsible for the
production of relativistic protons during the Bastille Day solar event: (1)
protons were accelerated to relativistic energies by a shock, presumably a
coronal mass ejection (CME). (2) protons were also accelerated to relativistic
energies by stochastic processes initiated by magnetohydrodynamic (MHD)
turbulence.Comment: 38 pages, 9 figures, accepted for publication in the Astrophysical
Journal, January, 200
Faddeev Calculations of Proton-Deuteron Radiative Capture with Exchange Currents
pd capture processes at various energies have been analyzed based on
solutions of 3N-Faddeev equations and using modern NN forces. The application
of the Siegert theorem is compared to the explicit use of - and
-like exchange currents connected to the AV18 NN interaction. Overall
good agreement with cross sections and spin observables has been obtained but
leaving room for improvement in some cases. Feasibility studies for 3NF's
consistently included in the 3N continuum and the 3N bound state have been
performed as well.Comment: Minor changes in notation, ps files for figure
- …
