3,052 research outputs found
Early Delirium Assessment for Hospitalized Older People in Indonesia: a Systematic Review
Background: Due to the increasing risk of getting co-morbidity and frailty, older people tend to be prone to hospitalization. Hospitalization in older people brings many adverse effects. Moreover, when these elderly get delirium, the mortality and morbidity will increase. The risk of getting deterioration and worsening condition because of delirium would also increase. In fact, delirium assessment is not a high priority in taking care older people during hospitalization because the focus of care is treating the disease.Delirium screening as an early recognition of delirium in the hospitalized elderly inIndonesia remains unreported and even do not well evaluated. Therefore, delirium as a preventable problem or causing problems remains unrecognized.Purpose: This paper aims to review the current evidence of early assessment of delirium in hospitalized older people.Methods: A systematic review was conducted from four databases yielding to 4 articles which met the inclusion and exclusion criteria.Results: There are four focuses on the result, namely delirium screening tools, patient characteristics, identified early delirium assessment, and outcomes affected by early delirium assessment. Confusion Assessment Method (CAM) was used as the delirium screening tool in the hospital. Establishing the care team involving many disciplines will give a better way to improve the integrated care and collaborative care.Conclusion: Performing CAM integrated into comprehensive geriatric assessment can be the most important thing to be undertaken when looking after the hospitalized elderly
Some comments on the divergence of perturbation series in Quantum Eletrodynamics
It has been argued by Dyson that the perturbation series in coupling constant
in QED can not be convergent. We find that similiar albeit slightly different
arguments lead to the divergence of the series of expansion in QED.Comment: Final Version, To appear in Modern Physics Letters
Entropic forces generated by grafted semiflexible polymers
The entropic force exerted by the Brownian fluctuations of a grafted
semiflexible polymer upon a rigid smooth wall are calculated both analytically
and by Monte Carlo simulations. Such forces are thought to play an important
role for several cellular phenomena, in particular, the physics of
actin-polymerization-driven cell motility and movement of bacteria like
Listeria. In the stiff limit, where the persistence length of the polymer is
larger than its contour length, we find that the entropic force shows scaling
behavior. We identify the characteristic length scales and the explicit form of
the scaling functions. In certain asymptotic regimes we give simple analytical
expressions which describe the full results to a very high numerical accuracy.
Depending on the constraints imposed on the transverse fluctuations of the
filament there are characteristic differences in the functional form of the
entropic forces; in a two-dimensional geometry the entropic force exhibits a
marked peak.Comment: 21 pages, 18 figures, minor misprints correcte
Design of a microwave radiometer for monitoring high voltage insulator contamination level
Microwave radiometry is a novel method for monitoring contamination levels on high voltage insulators. The microwave radiometer described measures energy emitted from the contamination layer and could provide a safe, reliable, contactless monitoring method that is effective under dry conditions. The design of the system has focused on optimizing accuracy, stability and sensitivity using a relatively low cost architecture. Experimental results demonstrate that the output from the radiometer is able to clearly distinguish between samples with different contamination levels under dry conditions. This contamination monitoring method could potentially provide advance warning of the future failure of wet insulators in climates where insulators can experience dry conditions for extended periods
Precursors, black holes, and a locality bound
We revisit the problem of precursors in the AdS/CFT correspondence.
Identification of the precursors is expected to improve our understanding of
the tension between holography and bulk locality and of the resolution of the
black hole information paradox. Previous arguments that the precursors are
large, undecorated Wilson loops are found to be flawed. We argue that the role
of precursors should become evident when one saturates a certain locality
bound. The spacetime uncertainty principle is a direct consequence of this
bound.Comment: 26 pages, 8 figs; reference added, minor clarification in sec. 2;
incorrect draft mistakenly used in version
Non-relativistic limit of Randall-Sundrum model: solutions, applications and constraints
In the Randall-Sundrum model with one brane, we found the approximate and
exact solutions for gravitational potentials and accelerations of test bodies
in these potentials for different geometrical configurations. We applied these
formulas for calculation of the gravitational interaction between two spheres
and found the approximate and exact expressions for the relative force
corrections to the Newton's gravitational force. We demonstrated that the
difference between relative force corrections for the approximate and exact
cases increases with the parameter (for the fixed distance between
centers of the spheres). On the other hand, this difference increases with
decreasing of the distance between the centers of the spheres (for the fixed
curvature scale parameter ). We got the upper limit for the curvature scale
parameter m. For these values of , the difference
between the approximate and exact solutions is negligible.Comment: LaTex 11 pages, 3 figure
Recommended from our members
Array atomic force microscopy for real-time multiparametric analysis.
Nanoscale multipoint structure-function analysis is essential for deciphering the complexity of multiscale biological and physical systems. Atomic force microscopy (AFM) allows nanoscale structure-function imaging in various operating environments and can be integrated seamlessly with disparate probe-based sensing and manipulation technologies. Conventional AFMs only permit sequential single-point analysis; widespread adoption of array AFMs for simultaneous multipoint study is challenging owing to the intrinsic limitations of existing technological approaches. Here, we describe a prototype dispersive optics-based array AFM capable of simultaneously monitoring multiple probe-sample interactions. A single supercontinuum laser beam is utilized to spatially and spectrally map multiple cantilevers, to isolate and record beam deflection from individual cantilevers using distinct wavelength selection. This design provides a remarkably simplified yet effective solution to overcome the optical cross-talk while maintaining subnanometer sensitivity and compatibility with probe-based sensors. We demonstrate the versatility and robustness of our system on parallel multiparametric imaging at multiscale levels ranging from surface morphology to hydrophobicity and electric potential mapping in both air and liquid, mechanical wave propagation in polymeric films, and the dynamics of living cells. This multiparametric, multiscale approach provides opportunities for studying the emergent properties of atomic-scale mechanical and physicochemical interactions in a wide range of physical and biological networks
Studying the Effect of Cutting Conditions in Turning Process on Surface Roughness for Different Materials
Surfaces quality is one of the most specified customer requirements for machine parts. The major indication of surfaces quality on machined parts is surface roughness. The research aim is to study the cutting conditions and their effects on the surface roughness. This research will use regression models and neuro-fuzzy to predict surface roughness over the machining time for variety of cutting conditions in turning. In the experimental part for turning, different types of materials (Aluminum alloy, brass alloy, and low carbon steel) were considered with different cutting speed, and feed rate. A linear regression and neuro-fuzzy model depending on statistical-mathematical method between surface roughness, Ra, and cutting condition will be derived, for the three materials. The effect of cutting parameters on surface roughness is evaluated and the optimum cutting condition for minimizing the surface roughness will be determined. The model will be established between the cutting conditions and surface roughness using regression and neuro-fuzzy model. As the results of this work, the linear regression and neuro-fuzzy model will be used in predicting surface roughness, can be used in manufacturing systems, this modeling helps engineer to reduce the efforts and improve the quality
- …
