688 research outputs found
Followee recommendation based on text analysis of micro-blogging activity
Nowadays, more and more users keep up with news through information streams coming from real-time micro-blogging activity offered by services such as Twitter. In these sites, information is shared via a followers/followees social network structure in which a follower receives all the micro-blogs from his/her followees. Recent research efforts on understanding micro-blogging as a novel form of communication and news spreading medium, have identified three different categories of users in these systems: information sources, information seekers and friends. As social networks grow in the number of registered users, finding relevant and reliable users to receive interesting information becomes essential. In this paper we propose a followee recommender system based on both the analysis of the content of micro-blogs to detect users´ interests and in the exploration of the topology of the network to find candidate users for recommendation. Experimental evaluation was conducted in order to determine the impact of different profiling strategies based on the text analysis of micro-blogs as well as several factors that allows the identification of users acting as good information sources. We found that user-generated content available in the network is a rich source of information for profiling users and finding like-minded people.Fil: Armentano, Marcelo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Godoy, Daniela Lis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentin
Un caso de dismorfia facial en un individuo infantil de la Edad del Bronce
X Congreso Nacional de Paleopatología. Univesidad Autónoma de Madrid, septiembre de 200
Activation of the Unfolded Protein Response Enhances Motor Recovery after Spinal Cord Injury
Spinal cord injury (SCI) is a major cause of paralysis, and involves multiple cellular and tissular responses including demyelination, inflammation, cell death and axonal degeneration. Recent evidence suggests that perturbation on the homeostasis of the endoplasmic reticulum (ER) is observed in different SCI models; however, the functional contribution of this pathway to this pathology is not known. Here we demonstrate that SCI triggers a fast ER stress reaction (1–3 h) involving the upregulation of key components of the unfolded protein response (UPR), a process that propagates through the spinal cord. Ablation of X-box-binding protein 1 (XBP1) or activating transcription factor 4 (ATF4) expression, two major UPR transcription factors, leads to a reduced locomotor recovery after experimental SCI. The effects of UPR inactivation were associated with a significant increase in the number of damaged axons and reduced amount of oligodendrocytes surrounding the injury zone. In addition, altered microglial activation and pro-inflammatory cytokine expression were observed in ATF4 deficient mice after SCI. Local expression of active XBP1 into the spinal cord using adeno-associated viruses enhanced locomotor recovery after SCI, and was associated with an increased number of oligodendrocytes. Altogether, our results demonstrate a functional role of the UPR in SCI, offering novel therapeutic targets to treat this invalidating condition
Fractional-order viscoelasticity applied to describe uniaxial stress relaxation of human arteries.
Viscoelastic models can be used to better understand arterial wall mechanics in physiological and pathological conditions. The arterial wall reveals very slow time-dependent decays in uniaxial stress-relaxation experiments, coherent with weak power-law functions. Quasi-linear viscoelastic (QLV) theory was successfully applied to modeling such responses, but an accurate estimation of the reduced relaxation function parameters can be very difficult. In this work, an alternative relaxation function based on fractional calculus theory is proposed to describe stress relaxation experiments in strips cut from healthy human aortas. Stress relaxation (1 h) was registered at three incremental stress levels. The novel relaxation function with three parameters was integrated into the QLV theory to fit experimental data. It was based in a modified Voigt model, including a fractional element of order α, called spring–pot. The stressrelaxation predictionwas accurate and fast. Sensitivity plots for each parameter presented a minimum near their optimal values. Least-squares errors remained below 2%. Values of order α = 0.1–0.3 confirmed a predominant elastic behavior. The other two parameters of the model can be associated to elastic and viscous constants that explain the time course of the observed relaxation function. The fractional-order model integrated into the QLV theory proved to capture the essential features of the arterial wall mechanical response
Computing the lower and upper bounds of Laplace eigenvalue problem: by combining conforming and nonconforming finite element methods
This article is devoted to computing the lower and upper bounds of the
Laplace eigenvalue problem. By using the special nonconforming finite elements,
i.e., enriched Crouzeix-Raviart element and extension , we get
the lower bound of the eigenvalue. Additionally, we also use conforming finite
elements to do the postprocessing to get the upper bound of the eigenvalue. The
postprocessing method need only to solve the corresponding source problems and
a small eigenvalue problem if higher order postprocessing method is
implemented. Thus, we can obtain the lower and upper bounds of the eigenvalues
simultaneously by solving eigenvalue problem only once. Some numerical results
are also presented to validate our theoretical analysis.Comment: 19 pages, 4 figure
A real quaternion spherical ensemble of random matrices
One can identify a tripartite classification of random matrix ensembles into
geometrical universality classes corresponding to the plane, the sphere and the
anti-sphere. The plane is identified with Ginibre-type (iid) matrices and the
anti-sphere with truncations of unitary matrices. This paper focusses on an
ensemble corresponding to the sphere: matrices of the form \bY= \bA^{-1} \bB,
where \bA and \bB are independent matrices with iid standard
Gaussian real quaternion entries. By applying techniques similar to those used
for the analogous complex and real spherical ensembles, the eigenvalue jpdf and
correlation functions are calculated. This completes the exploration of
spherical matrices using the traditional Dyson indices .
We find that the eigenvalue density (after stereographic projection onto the
sphere) has a depletion of eigenvalues along a ring corresponding to the real
axis, with reflective symmetry about this ring. However, in the limit of large
matrix dimension, this eigenvalue density approaches that of the corresponding
complex ensemble, a density which is uniform on the sphere. This result is in
keeping with the spherical law (analogous to the circular law for iid
matrices), which states that for matrices having the spherical structure \bY=
\bA^{-1} \bB, where \bA and \bB are independent, iid matrices the
(stereographically projected) eigenvalue density tends to uniformity on the
sphere.Comment: 25 pages, 3 figures. Added another citation in version
High field level crossing studies on spin dimers in the low dimensional quantum spin system NaT(CO)(HO) with T=Ni,Co,Fe,Mn
In this paper we demonstrate the application of high magnetic fields to study
the magnetic properties of low dimensional spin systems. We present a case
study on the series of 2-leg spin-ladder compounds
NaT(CO)(HO) with T = Ni, Co, Fe and Mn. In all
compounds the transition metal is in the high spin configuation. The
localized spin varies from S=1 to 3/2, 2 and 5/2 within this series. The
magnetic properties were examined experimentally by magnetic susceptibility,
pulsed high field magnetization and specific heat measurements. The data are
analysed using a spin hamiltonian description. Although the transition metal
ions form structurally a 2-leg ladder, an isolated dimer model consistently
describes the observations very well. This behaviour can be understood in terms
of the different coordination and superexchange angles of the oxalate ligands
along the rungs and legs of the 2-leg spin ladder. All compounds exhibit
magnetic field driven ground state changes which at very low temperatures lead
to a multistep behaviour in the magnetization curves. In the Co and Fe
compounds a strong axial anisotropy induced by the orbital magnetism leads to a
nearly degenerate ground state and a strongly reduced critical field. We find a
monotonous decrease of the intradimer magnetic exchange if the spin quantum
number is increased
Commensurability and beyond: from Mises and Neurath to the future of the socialist calculation debate
Mises' 'calculation argument' against socialism argues that monetary calculation is indispensable as a commensurable unit for evaluating factors of production. This is not due to his conception of rationality being purely 'algorithmic,' for it accommodates non-monetary, incommensurable values. Commensurability is needed, rather, as an aid in the face of economic complexity. The socialist Neurath's response to Mises is unsatisfactory in rejecting the need to explore possible non-market techniques for achieving a certain degree of commensurability. Yet Neurath's contribution is valuable in emphasizing the need for a balanced, comparative approach to the question of market versus non-market that puts the commensurability question in context. These central issues raised by adversaries in the early socialist calculation debate have continued relevance for the contemporary discussion
Toward Engineering Chiral Rodlike Metal-Organic Frameworks with Rare Topologies
The establishment of novel design strategies to target chiral rodlike MOFs, elusively faced until now, is one of the most straightforward manners to widen the scope of MOFs. Here we describe our last advances on the application of the metalloligand design strategy toward the development of efficient routes to obtain chiral rodlike MOFs. To this end, we have used as precursor an enantiopure homochiral hexanuclear wheel (1), derived from the amino acid d-valine, which, after a supramolecular reorganization into a one-dimensional homochiral chain-with the same configuration as 1-led to the formation of a homochiral rodlike MOF (2) exhibiting rare etd topology
- …
