358 research outputs found
NMR investigations of the interaction between the azo-dye sunset yellow and Fluorophenol
The interaction of small molecules with larger noncovalent assemblies is important across a wide range of disciplines. Here, we apply two complementary NMR spectroscopic methods to investigate the interaction of various fluorophenol isomers with sunset yellow. This latter molecule is known to form noncovalent aggregates in isotropic solution, and form liquid crystals at high concentrations. We utilize the unique fluorine-19 nucleus of the fluorophenol as a reporter of the interactions via changes in both the observed chemical shift and diffusion coefficients. The data are interpreted in terms of the indefinite self-association model and simple modifications for the incorporation of a second species into an assembly. A change in association mode is tentatively assigned whereby the fluorophenol binds end-on with the sunset yellow aggregates at low concentration and inserts into the stacks at higher concentrations
A Nonzero Gap Two-Dimensional Carbon Allotrope from Porous Graphene
Graphene is considered one of the most promising materials for future
electronic. However, in its pristine form graphene is a gapless material, which
imposes limitations to its use in some electronic applications. In order to
solve this problem many approaches have been tried, such as, physical and
chemical functionalizations. These processes compromise some of the desirable
graphene properties. In this work, based on ab initio quantum molecular
dynamics, we showed that a two-dimensional carbon allotrope, named biphenylene
carbon (BPC) can be obtained from selective dehydrogenation of porous graphene.
BPC presents a nonzero bandgap and well-delocalized frontier orbitals.
Synthetic routes to BPC are also addressed.Comment: Published on J. Phys. Chem. C, 2012, 116 (23), pp 12810-1281
Metabolism of ticagrelor in patients with acute coronary syndromes.
© The Author(s) 2018Ticagrelor is a state-of-the-art antiplatelet agent used for the treatment of patients with acute coronary syndromes (ACS). Unlike remaining oral P2Y12 receptor inhibitors ticagrelor does not require metabolic activation to exert its antiplatelet action. Still, ticagrelor is extensively metabolized by hepatic CYP3A enzymes, and AR-C124910XX is its only active metabolite. A post hoc analysis of patient-level (n = 117) pharmacokinetic data pooled from two prospective studies was performed to identify clinical characteristics affecting the degree of AR-C124910XX formation during the first six hours after 180 mg ticagrelor loading dose in the setting of ACS. Both linear and multiple regression analyses indicated that ACS patients presenting with ST-elevation myocardial infarction or suffering from diabetes mellitus are more likely to have decreased rate of ticagrelor metabolism during the acute phase of ACS. Administration of morphine during ACS was found to negatively influence transformation of ticagrelor into AR-C124910XX when assessed with linear regression analysis, but not with multiple regression analysis. On the other hand, smoking appears to increase the degree of ticagrelor transformation in ACS patients. Mechanisms underlying our findings and their clinical significance warrant further research.Peer reviewedFinal Published versio
Atomistic simulations of self-trapped exciton formation in silicon nanostructures: The transition from quantum dots to nanowires
Using an approximate time-dependent density functional theory method, we
calculate the absorption and luminescence spectra for hydrogen passivated
silicon nanoscale structures with large aspect ratio. The effect of electron
confinement in axial and radial directions is systematically investigated.
Excited state relaxation leads to significant Stokes shifts for short nanorods
with lengths less than 2 nm, but has little effect on the luminescence
intensity. The formation of self-trapped excitons is likewise observed for
short nanostructures only; longer wires exhibit fully delocalized excitons with
neglible geometrical distortion at the excited state minimum.Comment: 10 pages, 4 figure
Physics and chemistry of hydrogen in the vacancies of semiconductors
Hydrogen is well known to cause electrical passivation of lattice vacancies in semiconductors. This effect follows from the chemical passivation of the dangling bonds. Recently it was found that H in the carbon vacancy of SiC forms a three-center bond with two silicon neighbors in the vacancy, and gives rise to a new electrically active state. In this paper we examine hydrogen in the anion vacancies of BN, AlN, and GaN. We find that three-center bonding of H is quite common and follows clear trends in terms of the second-neighbor distance in the lattice, the typical (two-center) hydrogen-host-atom bond length, the electronegativity difference between host atoms and hydrogen, as well as the charge state of the vacancy. Three-center bonding limits the number of H atoms a nitrogen vacancy can capture to two, and prevents electric passivation in GaAs as well
Boron Nitride Monolayer: A Strain-Tunable Nanosensor
The influence of triaxial in-plane strain on the electronic properties of a
hexagonal boron-nitride sheet is investigated using density functional theory.
Different from graphene, the triaxial strain localizes the molecular orbitals
of the boron-nitride flake in its center depending on the direction of the
applied strain. The proposed technique for localizing the molecular orbitals
that are close to the Fermi level in the center of boron nitride flakes can be
used to actualize engineered nanosensors, for instance, to selectively detect
gas molecules. We show that the central part of the strained flake adsorbs
polar molecules more strongly as compared with an unstrained sheet.Comment: 20 pages, 9 figure
Isolated oxygen defects in 3C- and 4H-SiC: A theoretical study
Ab initio calculations in the local-density approximation have been carried out in SiC to determine the possible configurations of the isolated oxygen impurity. Equilibrium geometry and occupation levels were calculated. Substitutional oxygen in 3C-SiC is a relatively shallow effective mass like double donor on the carbon site (O-C) and a hyperdeep double donor on the Si site (O-Si). In 4H-SiC O-C is still a double donor but with a more localized electron state. In 3C-SiC O-C is substantially more stable under any condition than O-Si or interstitial oxygen (O-i). In 4H-SiC O-C is also the most stable one except for heavy n-type doping. We propose that O-C is at the core of the electrically active oxygen-related defect family found by deep level transient spectroscopy in 4H-SiC. The consequences of the site preference of oxygen on the SiC/SiO2 interface are discussed
A novel epilepsy mutation in the sodium channel SCN1A identifies a cytoplasmic domain for {beta} subunit interaction
A mutation in the sodium channel SCN1A was identified in a small Italian family with dominantly inherited generalized epilepsy with febrile seizures plus (GEFS+). The mutation, D1866Y, alters an evolutionarily conserved aspartate residue in the C-terminal cytoplasmic domain of the sodium channel {alpha} subunit. The mutation decreased modulation of the {alpha} subunit by {beta}1, which normally causes a negative shift in the voltage dependence of inactivation in oocytes. There was less of a shift with the mutant channel, resulting in a 10 mV difference between the wild-type and mutant channels in the presence of {beta}1. This shift increased the magnitude of the window current, which resulted in more persistent current during a voltage ramp. Computational analysis suggests that neurons expressing the mutant channels will fire an action potential with a shorter onset delay in response to a threshold current injection, and that they will fire multiple action potentials with a shorter interspike interval at a higher input stimulus. These results suggest a causal relationship between a positive shift in the voltage dependence of sodium channel inactivation and spontaneous seizure activity. Direct interaction between the cytoplasmic C-terminal domain of the wild-type{alpha} subunit with the {beta}1or {beta}3 subunit was first demonstrated by yeast two-hybrid analysis. The SCN1A peptide K1846-R1886 is sufficient for {beta} subunit interaction. Coimmunoprecipitation from transfected mammalian cells confirmed the interaction between the C-terminal domains of the {alpha} and {beta}1 subunits. The D1866Y mutation weakens this interaction, demonstrating a novel molecular mechanism leading to seizure susceptibility
Persistently modified h-channels after complex febrile seizures convert the seizure-induced enhancement of inhibition to hyperexcitability.
Febrile seizures are the most common type of developmental seizures, affecting up to 5% of children. Experimental complex febrile seizures involving the immature rat hippocampus led to a persistent lowering of seizure threshold despite an upregulation of inhibition. Here we provide a mechanistic resolution to this paradox by showing that, in the hippocampus of rats that had febrile seizures, the long-lasting enhancement of the widely expressed intrinsic membrane conductance Ih converts the potentiated synaptic inhibition to hyperexcitability in a frequency-dependent manner. The altered gain of this molecular inhibition-excitation converter reveals a new mechanism for controlling the balance of excitation-inhibition in the limbic system. In addition, here we show for the first time that h-channels are modified in a human neurological disease paradigm
Isometries, submetries and distance coordinates on Finsler manifolds
This paper considers fundamental issues related to Finslerian iso-
metries, submetries, distance and geodesics. It is shown that at each
point of a Finsler manifold there is a distance coordinate system. Us-
ing distance coordinates, a simple proof is given for the Finslerian
version of the Myers-Steenrod theorem and for the differentiability of
Finslerian submetries
- …
