936 research outputs found
A test of Local Realism with entangled kaon pairs and without inequalities
We propose the use of entangled pairs of neutral kaons, considered as a
promising tool to close the well known loopholes affecting generic Bell's
inequality tests, in a specific Hardy-type experiment. Hardy's contradiction
without inequalities between Local Realism and Quantum Mechanics can be
translated into a feasible experiment by requiring ideal detection efficiencies
for only one of the observables to be alternatively measured. Neutral kaons are
near to fulfil this requirement and therefore to close the efficiency loophole.Comment: 4 RevTeX page
Use of modern technology for the protection and management of water resources in Strymonas/Struma River basin
Percolation properties of the 2D Heisenberg model
We analyze the percolation properties of certain clusters defined on
configurations of the 2--dimensional Heisenberg model. We find that, given any
direction \vec{n} in O(3) space, the spins almost perpendicular to \vec{n} form
a percolating cluster. This result gives indications of how the model can avoid
a previously conjectured Kosterlitz-Thouless phase transition at finite
temperature T.Comment: 4 pages, 3 eps figures. Revised version (more clear abstract, some
new references
A strong-coupling analysis of two-dimensional O(N) sigma models with on square, triangular and honeycomb lattices
Recently-generated long strong-coupling series for the two-point Green's
functions of asymptotically free lattice models are
analyzed, focusing on the evaluation of dimensionless renormalization-group
invariant ratios of physical quantities and applying resummation techniques to
series in the inverse temperature and in the energy . Square,
triangular, and honeycomb lattices are considered, as a test of universality
and in order to estimate systematic errors. Large- solutions are carefully
studied in order to establish benchmarks for series coefficients and
resummations. Scaling and universality are verified. All invariant ratios
related to the large-distance properties of the two-point functions vary
monotonically with , departing from their large- values only by a few per
mille even down to .Comment: 53 pages (incl. 5 figures), tar/gzip/uuencode, REVTEX + psfi
GeantV: Results from the prototype of concurrent vector particle transport simulation in HEP
Full detector simulation was among the largest CPU consumer in all CERN
experiment software stacks for the first two runs of the Large Hadron Collider
(LHC). In the early 2010's, the projections were that simulation demands would
scale linearly with luminosity increase, compensated only partially by an
increase of computing resources. The extension of fast simulation approaches to
more use cases, covering a larger fraction of the simulation budget, is only
part of the solution due to intrinsic precision limitations. The remainder
corresponds to speeding-up the simulation software by several factors, which is
out of reach using simple optimizations on the current code base. In this
context, the GeantV R&D project was launched, aiming to redesign the legacy
particle transport codes in order to make them benefit from fine-grained
parallelism features such as vectorization, but also from increased code and
data locality. This paper presents extensively the results and achievements of
this R&D, as well as the conclusions and lessons learnt from the beta
prototype.Comment: 34 pages, 26 figures, 24 table
Finite-size scaling of the helicity modulus of the two-dimensional O(3) model
Using Monte Carlo methods, we compute the finite-size scaling function of the
helicity modulus of the two-dimensional O(3) model and compare it to
the low temperature expansion prediction. From this, we estimate the range of
validity for the leading terms of the low temperature expansion of the
finite-size scaling function and for the low temperature expansion of the
correlation length. Our results strongly suggest that a Kosterlitz-Thouless
transition at a temperature is extremely unlikely in this model.Comment: 4 pages, 3 Postscript figures, to appear in Phys. Rev. B Jan. 1997 as
a Brief Repor
About entanglement properties of kaons and tests of hidden variables models
In this letter we discuss entanglement properties of neutral kaons systems
and their use for testing local realism. In particular we show that, as
previous proposals, also a scheme recently suggested for performing a test of
hidden variable theories against standard quantum mechanics cannot be
conclusive
Energy loss of pions and electrons of 1 to 6 GeV/c in drift chambers operated with Xe,CO2(15%)
We present measurements of the energy loss of pions and electrons in drift
chambers operated with a Xe,CO2(15%) mixture. The measurements are carried out
for particle momenta from 1 to 6 GeV/c using prototype drift chambers for the
ALICE TRD. Microscopic calculations are performed using input parameters
calculated with GEANT3. These calculations reproduce well the measured average
and most probable values for pions, but a higher Fermi plateau is required in
order to reproduce our electron data. The widths of the measured distributions
are smaller for data compared to the calculations. The electron/pion
identification performance using the energy loss is also presented.Comment: 15 pages, 10 figures, accepted for publication in Nucl.Instrum.Meth.
Exploring the conformational dynamics of alanine dipeptide in solution subjected to an external electric field: A nonequilibrium molecular dynamics simulation
In this paper, we investigate the conformational dynamics of alanine
dipeptide under an external electric field by nonequilibrium molecular dynamics
simulation. We consider the case of a constant and of an oscillatory field. In
this context we propose a procedure to implement the temperature control, which
removes the irrelevant thermal effects of the field. For the constant field
different time-scales are identified in the conformational, dipole moment, and
orientational dynamics. Moreover, we prove that the solvent structure only
marginally changes when the external field is switched on. In the case of
oscillatory field, the conformational changes are shown to be as strong as in
the previous case, and non-trivial nonequilibrium circular paths in the
conformation space are revealed by calculating the integrated net probability
fluxes.Comment: 23 pages, 12 figure
Transition Radiation Spectra of Electrons from 1 to 10 GeV/c in Regular and Irregular Radiators
We present measurements of the spectral distribution of transition radiation
generated by electrons of momentum 1 to 10 GeV/c in different radiator types.
We investigate periodic foil radiators and irregular foam and fiber materials.
The transition radiation photons are detected by prototypes of the drift
chambers to be used in the Transition Radiation Detector (TRD) of the ALICE
experiment at CERN, which are filled with a Xe, CO2 (15 %) mixture. The
measurements are compared to simulations in order to enhance the quantitative
understanding of transition radiation production, in particular the momentum
dependence of the transition radiation yield.Comment: 18 pages, 15 figures, submitted to Nucl. Instr. Meth. Phys. Res.
- …
