8,935 research outputs found
Impact of Power Allocation and Antenna Directivity in the Capacity of a Multiuser Cognitive Ad Hoc Network
This paper studies the benefits that power control and antenna directivity can bring to the capacity of a multiuser cognitive radio network. The main objective is to optimize the secondary network sum rate under the capacity constraint of the primary network. Exploiting location awareness, antenna directivity, and the power control capability, the cognitive radio ad hoc network can broaden its coverage and improve capacity. Computer simulations show that by employing the proposed method the system performance is significantly enhanced compared to conventional fixed power allocation
Finite VEVs from a Large Distance Vacuum Wave Functional
We show how to compute vacuum expectation values from derivative expansions
of the vacuum wave functional. Such expansions appear to be valid only for
slowly varying fields, but by exploiting analyticity in a complex scale
parameter we can reconstruct the contribution from rapidly varying fields.Comment: 39 pages, 16 figures, LaTeX2e using package graphic
Resonating bipolarons
Electrons coupled to local lattice deformations end up in selftrapped
localized molecular states involving their binding into bipolarons when the
coupling is stronger than a certain critical value. Below that value they exist
as essentially itinerant electrons. We propose that the abrupt crossover
between the two regimes can be described by resonant pairing similar to the
Feshbach resonance in binary atomic collision processes. Given the
intrinsically local nature of the exchange of pairs of itinerant electrons and
localized bipolarons, we demonstrate the occurrence of such a resonance on a
finite-size cluster made out of metallic atoms surrounding a polaronic ligand
center.Comment: 7 pages, 4 figures, to be published in Europhysics Letter
Detection of Acetylene toward Cepheus A East with Spitzer
The first map of interstellar acetylene (C2H2) has been obtained with the
infrared spectrograph onboard the Spitzer Space Telescope. A spectral line map
of the vibration-rotation band at 13.7 microns carried out toward the
star-forming region Cepheus A East, shows that the C2H2 emission peaks in a few
localized clumps where gas-phase CO2 emission was previously detected with
Spitzer. The distribution of excitation temperatures derived from fits to the
C2H2 line profiles ranges from 50 to 200 K, a range consistent with that
derived for gaseous CO2 suggesting that both molecules probe the same warm gas
component. The C2H2 molecules are excited via radiative pumping by 13.7 microns
continuum photons emanating from the HW2 protostellar region. We derive column
densities ranging from a few x 10^13 to ~ 7 x 10^14 cm^-2, corresponding to
C2H2 abundances of 1 x 10^-9 to 4 x 10^-8 with respect to H2. The spatial
distribution of the C2H2 emission along with a roughly constant N(C2H2)/N(CO2)
strongly suggest an association with shock activity, most likely the result of
the sputtering of acetylene in icy grain mantles.Comment: 11 pages, 5 figures, accepted for publication in ApJ Letter
Hurst Coefficient in long time series of population size: Model for two plant populations with different reproductive strategies
Can the fractal dimension of fluctuations in population size be used to estimate extinction risk? The problem with estimating this fractal dimension is that the lengths of the time series are usually too short for conclusive results. This study answered this question with long time series data obtained from an iterative competition model. This model produces competitive extinction at different perturbation intensities for two different germination strategies: germination of all seeds vs. dormancy in half the seeds. This provided long time series of 900 years and different extinction risks. The results support the hypothesis for the effectiveness of the Hurst coefficient for estimating extinction risk
High-excitation OH and H_2O lines in Markarian 231: the molecular signatures of compact far-infrared continuum sources
The ISO/LWS far-infrared spectrum of the ultraluminous galaxy Mkn 231 shows
OH and H_2O lines in absorption from energy levels up to 300 K above the ground
state, and emission in the [O I] 63 micron and [C II] 158 micron lines. Our
analysis shows that OH and H_2O are radiatively pumped by the far-infrared
continuum emission of the galaxy. The absorptions in the high-excitation lines
require high far-infrared radiation densities, allowing us to constrain the
properties of the underlying continuum source. The bulk of the far-infrared
continuum arises from a warm (T_dust=70-100 K), optically thick
(tau_100micron=1-2) medium of effective diameter 200-400 pc. In our best-fit
model of total luminosity L_IR, the observed OH and H2O high-lying lines arise
from a luminous (L/L_IR~0.56) region with radius ~100 pc. The high surface
brightness of this component suggests that its infrared emission is dominated
by the AGN. The derived column densities N(OH)>~10^{17} cm^{-2} and
N(H_2O)>~6x10^{16} cm^{-2} may indicate XDR chemistry, although significant
starburst chemistry cannot be ruled out. The lower-lying OH, [C II] 158 micron,
and [O I] 63 micron lines arise from a more extended (~350 pc) starburst
region. We show that the [C II] deficit in Mkn 231 is compatible with a high
average abundance of C+ because of an extreme overall luminosity to gas mass
ratio. Therefore, a [C II] deficit may indicate a significant contribution to
the luminosity by an AGN, and/or by extremely efficient star formation.Comment: 16 pages, 6 figures, accepted for publication in The Astrophysical
Journa
D-brane probes on L^{abc} Superconformal Field Theories
We study supersymmetric embeddings of D-brane probes of different
dimensionality in the AdS_5xL^{abc} background of type IIB string theory. In
the case of D3-branes, we recover the known three-cycles dual to the dibaryonic
operators of the gauge theory and we also find a new family of supersymmetric
embeddings. Supersymmetric configurations of D5-branes, representing fractional
branes, and of spacetime filling D7-branes (which can be used to add flavor)
are also found. Stable non supersymmetric configurations corresponding to fat
strings and domain walls are found as well.Comment: 20 pages, LaTeX;v2: minor improvements, references adde
The Excitation of NH in Interstellar Molecular Clouds. I - Models
We present LVG and non-local radiative transfer calculations involving the
rotational and hyperfine structure of the spectrum of NH with
collisional rate coefficients recently derived by us. The goal of this study is
to check the validity of the assumptions made to treat the hyperfine structure
and to study the physical mechanisms leading to the observed hyperfine
anomalies.
We find that the usual hypothesis of identical excitation temperatures for
all hyperfine components of the =1-0 transition is not correct within the
range of densities existing in cold dense cores, i.e., a few 10 \textless
n(H) \textless a few 10 cm. This is due to different radiative
trapping effects in the hyperfine components. Moreover, within this range of
densities and considering the typical abundance of NH, the total
opacity of rotational lines has to be derived taking into account the hyperfine
structure. The error made when only considering the rotational energy structure
can be as large as 100%. Using non-local models we find that, due to
saturation, hyperfine anomalies appear as soon as the total opacity of the
=1-0 transition becomes larger than 20. Radiative scattering in
less dense regions enhance these anomalies, and particularly, induce a
differential increase of the excitation temperatures of the hyperfine
components. This process is more effective for the transitions with the highest
opacities for which emerging intensities are also reduced by self-absorption
effects. These effects are not as critical as in HCO or HCN, but should be
taken into account when interpreting the spatial extent of the NH
emission in dark clouds.Comment: 13 pages, 12 figure
- …
