3,848 research outputs found
Comparisons Between Modeling and Measured Performance of the BNL Linac
Quite good agreement has been achieved between computer modeling and actual
performance of the Brookhaven 200 MeV Linac. We will present comparisons
between calculated and measured performance for the beam transport through the
RFQ, the 6 meter transport from RFQ to the linac and meching and transport
through the linac.Comment: 3 page
The NSNS High Energy Beam Transport Line
In the National Spallation Neutron Source (NSNS) design, a 180 meter long
transport line connects the 1 GeV linac to an accumulator ring. The linac beam
has a current of 28 mA, pulse length of 1 ms, and 60 Hz rep rate. The high
energy transport line consists of sixteen 60 degrees FODO cells, and
accommodates a 90 degrees achromatic bend, an energy compressor, collimators,
part of injection system, and enough diagnostic devices to measure the beam
quality before injection. To reduce the uncontrolled beam losses, this line has
nine beam halo scrapers and very tight tolerances on both transverse and
longitudinal beam dynamics under space charge conditions. The design of this
line is presented.Comment: 3 pages, transfer line desig
The relevance of point defects in studying silica-based materials from bulk to nanosystems
The macroscopic properties of silica can be modified by the presence of local microscopic modifications at the scale of the basic molecular units (point defects). Such defects can be generated during the production of glass, devices, or by the environments where the latter have to operate, impacting on the devices’ performance. For these reasons, the identification of defects, their generation processes, and the knowledge of their electrical and optical features are relevant for microelectronics and optoelectronics. The aim of this manuscript is to report some examples of how defects can be generated, how they can impact device performance, and how a defect species or a physical phenomenon that is a disadvantage in some fields can be used as an advantage in others
A Super-Conducting Linac Driver for the HFBR
This paper reports on the feasibility study of a proton Super-Conducting
Linac (SCL) as a driver gor the High-Flux Breader Reactor (HFBR) at Brookhaven
National Laboratory (BNL). The Linac operates in Continuos Wave (CW) mode to
produce an average 10 MW of beam power. The Linac energy is 1.0 GeV. The
average proton beam intensity is 10 mA.Comment: 3 page
DELAMINAZIONE INTERLAMINARE DI COMPOSITI CFRP AL VARIARE DELLE CONDIZIONI DI CURA DELLA MATRICE
In questo lavoro si è condotto uno studio sperimentale del comportamento a delaminazione interlaminare in Modo I di laminati compositi unidirezionali in fibra di carbonio e matrice epossidica (CFRP), al variare delle condizioni di cura della matrice. Tutti i sistemi analizzati hanno utilizzato lo stesso tessuto e lo stesso monomero epossidico DGEBA. Variando il processo di cura (cura termica o mediante radiazioni), gli agenti di cura (ammine o anidridi per i sistemi curati termicamente), e l’impiego di additivi tenacizzanti (es. il PES per i sistemi irradiati), è stato possibile controllare e modificare sia il grado di adesione fibra/matrice, che il grado di fragilità della matrice (monitorato attraverso il Fattore Critico di Intensificazione degli Sforzi KIC). Il lavoro quindi propone una analisi critica dei meccanismi di resistenza alla delaminazione controllati dalla tenacità della matrice e dalla resistenza dell’interfaccia fibra-matrice, mediante la determinazione delle Curve di Resistenza e dei valori di GIC di Innesco e di Propagazione ottenuti per i diversi sistemi presi in esame
Studies of network organization and dynamics of e-beam crosslinked PVPs: From macro to nano
In this work the influence of poly(N-vinylpyrrolidone)(PVP)concentration in water on the organization and dynamics of the corresponding macro-/nanogel networks has been systematically investigated. Irradiation has been performed at the same irradiation dose(within the sterilization dose range)and dose rate. In the selected irradiation conditions, the transition between macroscopic gelation and
micro/nanogels formation is observed just below the critical overlap concentration(1 wt%),whereas the net prevalence of intramolecular over intermolecular crosslinking occurs at a lower polymer
concentration(below 0.25 wt%). Dynamic\u2013mechanical spectroscopy has been applied as a classical methodology to estimate the network mesh size for macrogels in their swollen state, while 13C NMR spin\u2013lattice relaxation spectroscopy has been applied on both the macrogel and nanogel freeze dried
residues to withdraw interesting information of the network spatial organization in the passage of scale from macrotonano
Endocytosis and intracellular processing of platelet microparticles by brain endothelial cells
Platelet-derived microparticles (PMP) bind and modify the phenotype of many cell types including endothelial cells. Recently, we showed that PMP were internalized by human brain endothelial cells (HBEC). Here we intend to better characterize the internalization mechanisms of PMP and their intracellular fate. Confocal microscopy analysis of PKH67-labelled PMP distribution in HBEC showed PMP in early endosome antigen 1 positive endosomes and in LysoTracker-labelled lysosomes, confirming a role for endocytosis in PMP internalization. No fusion of calcein-loaded PMP with HBEC membranes was observed. Quantification of PMP endocytosis using flow cytometry revealed that it was partially inhibited by trypsin digestion of PMP surface proteins and by extracellular Ca2+ chelation by EDTA, suggesting a partial role for receptor-mediated endocytosis in PMP uptake. This endocytosis was independent of endothelial receptors such as intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 and was not increased by tumour necrosis factor stimulation of HBEC. Platelet-derived microparticle internalization was dramatically increased in the presence of decomplemented serum, suggesting a role for PMP opsonin-dependent phagocytosis. Platelet-derived microparticle uptake was greatly diminished by treatment of HBEC with cytochalasin D, an inhibitor of microfilament formation required for both phagocytosis and macropinocytosis, with methyl-β-cyclodextrin that depletes membrane cholesterol needed for macropinocytosis and with amiloride that inhibits the Na+/H+ exchanger involved in macropinocytosis. In conclusion, PMP are taken up by active endocytosis in HBEC, involving mechanisms consistent with both phagocytosis and macropinocytosis. These findings identify new processes by which PMP could modify endothelial cell phenotype and functions. © 2011 The Authors. Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd
A Motivating Exploration on Lunar Craters and Low-Energy Dynamics in the Earth -- Moon System
It is known that most of the craters on the surface of the Moon were created
by the collision of minor bodies of the Solar System. Main Belt Asteroids,
which can approach the terrestrial planets as a consequence of different types
of resonance, are actually the main responsible for this phenomenon. Our aim is
to investigate the impact distributions on the lunar surface that low-energy
dynamics can provide. As a first approximation, we exploit the hyberbolic
invariant manifolds associated with the central invariant manifold around the
equilibrium point L_2 of the Earth - Moon system within the framework of the
Circular Restricted Three - Body Problem. Taking transit trajectories at
several energy levels, we look for orbits intersecting the surface of the Moon
and we attempt to define a relationship between longitude and latitude of
arrival and lunar craters density. Then, we add the gravitational effect of the
Sun by considering the Bicircular Restricted Four - Body Problem. As further
exploration, we assume an uniform density of impact on the lunar surface,
looking for the regions in the Earth - Moon neighbourhood these colliding
trajectories have to come from. It turns out that low-energy ejecta originated
from high-energy impacts are also responsible of the phenomenon we are
considering.Comment: The paper is being published in Celestial Mechanics and Dynamical
Astronomy, vol. 107 (2010
The durability of carbon fiber/epoxy composites under hydrothermal ageing
Studies on fibre reinforced composites are now receiving greater attention. Industrial applications have been successful in areas like aerospace, automobile, marine, construction and sporting goods. The first generation of epoxy resins for use in carbon fibre composites are able to achieve optimized high stiffness modules and high heat resistance by a high crosslink density, reached through thermal curing. However, these formulations can be very toxic and brittle with low crack resistance, which was a major disadvantage for structural applications. In the last years the use of ionizing radiation as alternative to thermal curing has been proposed as an environmentally friendly process. Furthermore, in order to enhance toughness mechanical requirements for their applications, the formulation generally consists of blends of epoxy resins and engineering thermoplastics. In terms of durability (service life and reliability), in these materials it depends on different environmental conditions (temperature, moisture, etc.), and it is very important to know how their properties are modified after the exposure to different temperature and moisture absorption cycles. In this work carbon fibre composites produced by ionizing radiation induced curing of the epoxy based matrices have been subjected to thermal and moisture absorption ageing and the influence of these treatments on the thermal and mechanical properties has been investigated through dynamic mechanical thermal analysis and mechanical fracture toughness tests
Alessi 95 and the short period Cepheid SU Cassiopeiae
The parameters for the newly-discovered open cluster Alessi 95 are
established on the basis of available photometric and spectroscopic data, in
conjunction with new observations. Colour excesses for
spectroscopically-observed B and A-type stars near SU Cas follow a reddening
relation described by E(U-B)/E(B-V)=0.83+0.02*E(B-V), implying a value of
R=Av/E(B-V)~2.8 for the associated dust. Alessi 95 has a mean reddening of
E(B-V)_(B0)=0.35+-0.02 s.e., an intrinsic distance modulus of Vo-Mv=8.16+-0.04
s.e. (+-0.21 s.d.), d=429+-8 pc, and an estimated age of 10^8.2 yr from ZAMS
fitting of available UBV, CCD BV, NOMAD, and 2MASS JHKs observations of cluster
stars. SU Cas is a likely cluster member, with an inferred space reddening of
E(B-V)=0.33+-0.02 and a luminosity of =-3.15+-0.07 s.e., consistent with
overtone pulsation (P_FM=2.75 d), as also implied by the Cepheid's light curve
parameters, rate of period increase, and Hipparcos parallaxes for cluster
stars. There is excellent agreement of the distance estimates for SU Cas
inferred from cluster ZAMS fitting, its pulsation parallax derived from the
infrared surface brightness technique, and Hipparcos parallaxes, which all
agree to within a few percent.Comment: Accepted for Publication (MNRAS
- …
