357 research outputs found

    Fecal Contamination of Shallow Tubewells in Bangladesh Inversely Related to Arsenic

    Get PDF
    The health risks of As exposure due to the installation of millions of shallow tubewells in the Bengal Basin are known, but fecal contamination of shallow aquifers has not systematically been examined. This could be a source of concern in densely populated areas with poor sanitation because the hydraulic travel time from surface water bodies to shallow wells that are low in As was previously shown to be considerably shorter than for shallow wells that are high in As. In this study, 125 tubewells 6−36 m deep were sampled in duplicate for 18 months to quantify the presence of the fecal indicator Escherichia coli. On any given month, E. coli was detected at levels exceeding 1 most probable number per 100 mL in 19−64% of all shallow tubewells, with a higher proportion typically following periods of heavy rainfall. The frequency of E. coli detection averaged over a year was found to increase with population surrounding a well and decrease with the As content of a well, most likely because of downward transport of E. coli associated with local recharge. The health implications of higher fecal contamination of shallow tubewells, to which millions of households in Bangladesh have switched in order to reduce their exposure to As, need to be evaluated

    Implications of Fecal Bacteria Input from Latrine-Polluted Ponds for Wells in Sandy Aquifers

    Get PDF
    Ponds receiving latrine effluents may serve as sources of fecal contamination to shallow aquifers tapped by millions of tube-wells in Bangladesh. To test this hypothesis, transects of monitoring wells radiating away from four ponds were installed in a shallow sandy aquifer underlying a densely populated village and monitored for 14 months. Two of the ponds extended to medium sand. Another pond was sited within silty sand and the last in silt. The fecal indicator bacterium E. coli was rarely detected along the transects during the dry season and was only detected near the ponds extending to medium sand up to 7 m away during the monsoon. A log-linear decline in E. coli and Bacteroidales concentrations with distance along the transects in the early monsoon indicates that ponds excavated in medium sand were the likely source of contamination. Spatial removal rates ranged from 0.5-1.3 log10/m. After the ponds were artificially filled with groundwater to simulate the impact of a rain storm, E. coli levels increased near a pond recently excavated in medium sand, but no others. These observations show that adjacent sediment grain-size and how recently a pond was excavated influence how much fecal contamination ponds receiving latrine effluents contribute to neighboring groundwater

    Comparison of fecal indicators with pathogenic bacteria and rotavirus in groundwater

    Get PDF
    Groundwater is routinely analyzed for fecal indicators but direct comparisons of fecal indicators to the presence of bacterial and viral pathogens are rare. This study was conducted in rural Bangladesh where the human population density is high, sanitation is poor, and groundwater pumped from shallow tubewells is often contaminated with fecal bacteria. Five indicator microorganisms (E. coli, total coliform, F+RNA coliphage, Bacteroides and human-associated Bacteroides) and various environmental parameters were compared to the direct detection of waterborne pathogens by quantitative PCR in groundwater pumped from 50 tubewells. Rotavirus was detected in groundwater filtrate from the largest proportion of tubewells (40%), followed by Shigella (10%), Vibrio (10%), and pathogenic E. coli (8%). Spearman rank correlations and sensitivity-specificity calculations indicate that some, but not all, combinations of indicators and environmental parameters can predict the presence of pathogens. Culture-dependent fecal indicator bacteria measured on a single date did not predict total bacterial pathogens, but annually averaged monthly measurements of culturable E. coli did improve prediction for total bacterial pathogens. A qPCR-based E. coli assay was the best indicator for the bacterial pathogens. F+RNA coliphage were neither correlated nor sufficiently sensitive towards rotavirus, but were predictive of bacterial pathogens. Since groundwater cannot be excluded as a significant source of diarrheal disease in Bangladesh and neighboring countries with similar characteristics, the need to develop more effective methods for screening tubewells with respect to microbial contamination is necessary

    Observation of γγ → ττ in proton-proton collisions and limits on the anomalous electromagnetic moments of the τ lepton

    Get PDF
    The production of a pair of τ leptons via photon–photon fusion, γγ → ττ, is observed for the f irst time in proton–proton collisions, with a significance of 5.3 standard deviations. This observation is based on a data set recorded with the CMS detector at the LHC at a center-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 138 fb−1. Events with a pair of τ leptons produced via photon–photon fusion are selected by requiring them to be back-to-back in the azimuthal direction and to have a minimum number of charged hadrons associated with their production vertex. The τ leptons are reconstructed in their leptonic and hadronic decay modes. The measured fiducial cross section of γγ → ττ is σfid obs = 12.4+3.8 −3.1 fb. Constraints are set on the contributions to the anomalous magnetic moment (aτ) and electric dipole moments (dτ) of the τ lepton originating from potential effects of new physics on the γττ vertex: aτ = 0.0009+0.0032 −0.0031 and |dτ| < 2.9×10−17ecm (95% confidence level), consistent with the standard model

    Increase in diarrheal disease associated with arsenic mitigation in Bangladesh.

    Get PDF
    Millions of households throughout Bangladesh have been exposed to high levels of arsenic (As) causing various deadly diseases by drinking groundwater from shallow tubewells for the past 30 years. Well testing has been the most effective form of mitigation because it has induced massive switching from tubewells that are high (>50 µg/L) in As to neighboring wells that are low in As. A recent study has shown, however, that shallow low-As wells are more likely to be contaminated with the fecal indicator E. coli than shallow high-As wells, suggesting that well switching might lead to an increase in diarrheal disease.Approximately 60,000 episodes of childhood diarrhea were collected monthly by community health workers between 2000 and 2006 in 142 villages of Matlab, Bangladesh. In this cross-sectional study, associations between childhood diarrhea and As levels in tubewell water were evaluated using logistic regression models.Adjusting for wealth, population density, and flood control by multivariate logistic regression, the model indicates an 11% (95% confidence intervals (CIs) of 4-19%) increase in the likelihood of diarrhea in children drinking from shallow wells with 10-50 µg/L As compared to shallow wells with >50 µg/L As. The same model indicates a 26% (95%CI: 9-42%) increase in diarrhea for children drinking from shallow wells with ≤10 µg/L As compared to shallow wells with >50 µg/L As.Children drinking water from shallow low As wells had a higher prevalence of diarrhea than children drinking water from high As wells. This suggests that the health benefits of reducing As exposure may to some extent be countered by an increase in childhood diarrhea

    Fecal Contamination of Shallow Tubewells in Bangladesh Inversely Related to Arsenic

    No full text
    The health risks of As exposure due to the installation of millions of shallow tubewells in the Bengal Basin are known, but fecal contamination of shallow aquifers has not systematically been examined. This could be a source of concern in densely populated areas with poor sanitation because the hydraulic travel time from surface water bodies to shallow wells that are low in As was previously shown to be considerably shorter than for shallow wells that are high in As. In this study, 125 tubewells 6−36 m deep were sampled in duplicate for 18 months to quantify the presence of the fecal indicator <i>Escherichia coli</i>. On any given month, <i>E. coli</i> was detected at levels exceeding 1 most probable number per 100 mL in 19−64% of all shallow tubewells, with a higher proportion typically following periods of heavy rainfall. The frequency of <i>E. coli</i> detection averaged over a year was found to increase with population surrounding a well and decrease with the As content of a well, most likely because of downward transport of <i>E. coli</i> associated with local recharge. The health implications of higher fecal contamination of shallow tubewells, to which millions of households in Bangladesh have switched in order to reduce their exposure to As, need to be evaluated

    Implications of Fecal Bacteria Input from Latrine-Polluted Ponds for Wells in Sandy Aquifers

    No full text
    Ponds receiving latrine effluents may serve as sources of fecal contamination to shallow aquifers tapped by millions of tube-wells in Bangladesh. To test this hypothesis, transects of monitoring wells radiating away from four ponds were installed in a shallow sandy aquifer underlying a densely populated village and monitored for 14 months. Two of the ponds extended to medium sand. Another pond was sited within silty sand and the last in silt. The fecal indicator bacterium <i>E. coli</i> was rarely detected along the transects during the dry season and was only detected near the ponds extending to medium sand up to 7 m away during the monsoon. A log–linear decline in <i>E. coli</i> and Bacteroidales concentrations with distance along the transects in the early monsoon indicates that ponds excavated in medium sand were the likely source of contamination. Spatial removal rates ranged from 0.5 to 1.3 log<sub>10</sub>/m. After the ponds were artificially filled with groundwater to simulate the impact of a rain storm, <i>E. coli</i> levels increased near a pond recently excavated in medium sand, but no others. These observations show that adjacent sediment grain-size and how recently a pond was excavated influence the how much fecal contamination ponds receiving latrine effluents contribute to neighboring groundwater

    Comparison of fecal indicators with pathogenic bacteria and rotavirus in groundwater

    No full text
    Groundwater is routinely analyzed for fecal indicators but direct comparisons of fecal indicators to the presence of bacterial and viral pathogens are rare. This study was conducted in rural Bangladesh where the human population density is high, sanitation is poor, and groundwater pumped from shallow tubewells is often contaminated with fecal bacteria. Five indicator microorganisms (E. coli, total coliform, F+RNA coliphage, Bacteroides and human-associated Bacteroides) and various environmental parameters were compared to the direct detection of waterborne pathogens by quantitative PCR in groundwater pumped from 50 tubewells. Rotavirus was detected in groundwater filtrate from the largest proportion of tubewells (40%), followed by Shigella (10%), Vibrio (10%), and pathogenic E. coli (8%). Spearman rank correlations and sensitivity-specificity calculations indicate that some, but not all, combinations of indicators and environmental parameters can predict the presence of pathogens. Culture-dependent fecal indicator bacteria measured on a single date did not predict total bacterial pathogens, but annually averaged monthly measurements of culturable E. coli did improve prediction for total bacterial pathogens. A qPCR-based E. coli assay was the best indicator for the bacterial pathogens. F+RNA coliphage were neither correlated nor sufficiently sensitive towards rotavirus, but were predictive of bacterial pathogens. Since groundwater cannot be excluded as a significant source of diarrheal disease in Bangladesh and neighboring countries with similar characteristics, the need to develop more effective methods for screening tubewells with respect to microbial contamination is necessary
    corecore