5,349 research outputs found

    Pressure-tuned First-order Phase Transition and Accompanying Resistivity Anomaly in CeZn_{1-\delta}Sb_{2}

    Get PDF
    The Kondo lattice system CeZn_{0.66}Sb_{2} is studied by the electrical resistivity and ac magnetic susceptibility measurements at several pressures. At P=0 kbar, ferromagnetic and antiferromagnetic transitions appear at 3.6 and 0.8 K, respectively. The electrical resistivity at T_N dramatically changes from the Fisher-Langer type (ferromagnetic like) to the Suzaki-Mori type near 17 kbar, i.e., from a positive divergence to a negative divergence in the temperature derivative of the resistivity. The pressure-induced SM type anomaly, which shows thermal hysteresis, is easily suppressed by small magnetic field (1.9 kOe for 19.8 kbar), indicating a weakly first-order nature of the transition. By subtracting a low-pressure data set, we directly compare the resistivity anomaly with the SM theory without any assumption on backgrounds, where the negative divergence in d\rho/dT is ascribed to enhanced critical fluctuations in the presence of superzone gaps.Comment: 5 pages, 4 figures; journal-ref adde

    Balance Functions, Correlations, Charge Fluctuations and Interferometry

    Get PDF
    Connections between charge balance functions, charge fluctuations and correlations are presented. It is shown that charge fluctuations can be directly expressed in terms of a balance functions under certain assumptions. The distortion of charge balance functions due to experimental acceptance is discussed and the effects of identical boson interference is illustrated with a simple model.Comment: 1 eps figure included. 5 pages in revtex

    Yang--Mills sphalerons in all even spacetime dimensions d=2kd=2k, k>2k>2 : kk=3,4

    Get PDF
    The classical solutions to higher dimensional Yang--Mills (YM) systems, which are integral parts of higher dimensional Einstein--YM (EYM) systems, are studied. These are the gravity decoupling limits of the fully gravitating EYM solutions. In odd spacetime dimensions, depending on the choice of gauge group, these are either topologically stable or unstable. Both cases are analysed, the latter numerically only. In even spacetime dimensions they are always unstable, describing saddle points of the energy, and can be described as {\it sphalerons}. This instability is analysed by constructing the noncontractible loops and calculating the Chern--Simons (CS) charges, and also perturbatively by numerically constructing the negative modes. This study is restricted to the simplest YM system in spacetime dimensions d=6,7,8d=6,7,8, which is amply illustrative of the generic case.Comment: 16 pages, 3 figures ; comments added, to appear in J. Phys.

    Hanbury-Brown--Twiss Analysis in a Solvable Model

    Full text link
    The analysis of meson correlations by Hanbury-Brown--Twiss interferometry is tested with a simple model of meson production by resonance decay. We derive conditions which should be satisfied in order to relate the measured momentum correlation to the classical source size. The Bose correlation effects are apparent in both the ratio of meson pairs to singles and in the ratio of like to unlike pairs. With our parameter values, we find that the single particle distribution is too distorted by the correlation to allow a straightforward analysis using pair correlation normalized by the singles rates. An analysis comparing symmetrized to unsymmetrized pairs is more robust, but nonclassical off-shell effects are important at realistic temperatures.Comment: 21 pages + 9 figures (tarred etc. using uufiles, submitted separately), REVTeX 3.0, preprint number: DOE/ER/40561-112/INT93-00-3

    Chiral Symmetry Restoration at Finite Temperature and Chemical Potential in the Improved Ladder Approximation

    Full text link
    The chiral symmetry of QCD is studied at finite temperature and chemical potential using the Schwinger-Dyson equation in the improved ladder approximation. We calculate three order parameters; the vacuum expectation value of the quark bilinear operator, the pion decay constant and the quark mass gap. We have a second order phase transition at the temperature Tc=169T_c=169 MeV along the zero chemical potential line, and a first order phase transition at the chemical potential μc=598\mu_c=598 MeV along the zero temperature line. We also calculate the critical exponents of the three order parameters.Comment: 16 pages + 10 uuencoded eps figures, LaTe

    Event Reconstruction in the PHENIX Central Arm Spectrometers

    Full text link
    The central arm spectrometers for the PHENIX experiment at the Relativistic Heavy Ion Collider have been designed for the optimization of particle identification in relativistic heavy ion collisions. The spectrometers present a challenging environment for event reconstruction due to a very high track multiplicity in a complicated, focusing, magnetic field. In order to meet this challenge, nine distinct detector types are integrated for charged particle tracking, momentum reconstruction, and particle identification. The techniques which have been developed for the task of event reconstruction are described.Comment: Accepted for publication in Nucl. Instrum. A. 34 pages, 23 figure

    Precision scans of the pixel cell response of double sided 3D pixel detectors to pion and x-ray beams

    Get PDF
    hree-dimensional (3D) silicon sensors offer potential advantages over standard planar sensors for radiation hardness in future high energy physics experiments and reduced charge-sharing for X-ray applications, but may introduce inefficiencies due to the columnar electrodes. These inefficiencies are probed by studying variations in response across a unit pixel cell in a 55μm pitch double-sided 3D pixel sensor bump bonded to TimePix and Medipix2 readout ASICs. Two complementary characterisation techniques are discussed: the first uses a custom built telescope and a 120GeV pion beam from the Super Proton Synchrotron (SPS) at CERN; the second employs a novel technique to illuminate the sensor with a micro-focused synchrotron X-ray beam at the Diamond Light Source, UK. For a pion beam incident perpendicular to the sensor plane an overall pixel efficiency of 93.0±0.5% is measured. After a 10o rotation of the device the effect of the columnar region becomes negligible and the overall efficiency rises to 99.8±0.5%. The double-sided 3D sensor shows significantly reduced charge sharing to neighbouring pixels compared to the planar device. The charge sharing results obtained from the X-ray beam study of the 3D sensor are shown to agree with a simple simulation in which charge diffusion is neglected. The devices tested are found to be compatible with having a region in which no charge is collected centred on the electrode columns and of radius 7.6±0.6μm. Charge collection above and below the columnar electrodes in the double-sided 3D sensor is observed

    Characterisation of Medipix3 Silicon Detectors in a Charged-Particle Beam

    Get PDF
    While designed primarily for X-ray imaging applications, the Medipix3 ASIC can also be used for charged-particle tracking. In this work, results from a beam test at the CERN SPS with irradiated and non-irradiated sensors are presented and shown to be in agreement with simulation, demonstrating the suitability of the Medipix3 ASIC as a tool for characterising pixel sensors.Comment: 16 pages, 13 figure

    Chiral Symmetry Breaking with the Curtis-Pennington Vertex

    Get PDF
    We study chiral symmetry breaking in quenched QED4_4, using a vertex Ansatz recently proposed by Curtis and Pennington. Bifurcation analysis is employed to establish the existence of a critical coupling and to estimate its value. The main results are in qualitative agreement with the ladder approximation, the numerical changes being minor.Comment: 19 pages, LaTe
    corecore