2,229 research outputs found

    The influence of the thickness of the Cds emitter layer on the performance of a CIGS solar cell with acceptor defects

    Full text link
    In this work, we simulated a solar cell based on CIGS with simple default acceptor, using software (SCAPS) version 3.302 in order to study certain parameters. In particular, we have varied the thickness of the CdS emitter (0.05 mum, 0.04 mum and 0.03 mum) to study its influence on the performance of the cell. We were able to record that the energy efficiency increased from 16.50% for a thickness of 0.05 mum of the emitter to 16.87% for a thickness of 0.03 mum of the emitter. We also noted an improvement in other parameters, such as the form factor from FF = 79.81% to 80.10%, with the decrease in the thickness of the CdS. And from the Nyquist diagram, we also determined parameters like the series resistance to get an idea on the equivalent electrical circuit of the studied cell

    Evaluation of four plants compost teas against fungi responsible for Corn damping-off in Côte d’Ivoire

    Full text link
    Corn (Zea mays L.) is one of the most important cereals in Côte d'Ivoire. However, Corn seeds and seedlings are susceptible to infection by a number of soilborne fungi which caused seeds decay before or after germination. The objective of this study is to evaluate the suppressive effect of Four plants compost teas (Chromolaena odorata, Ricinus communis, Nicotiana tabacum, Azadiracta indica) on Corn damping off. In vitro assays showed a most suppressive effect of C. odorata and R. communis compost teas on mycelial growth of pathogenic fungi. Results of in vivo trials showed significant reduction of Corn seedlings diseases incidence and high seed germination percent after treatment with C. odorata, R. communis and A. indica compost teas. No efficiency effect was noted with N. tabacum compost tea. This study demonstrated the usefulness of compost tea as an efficient biological tool for the control of fungi responsible of corn damping-off

    Combining hydrology and mosquito population models to identify the drivers of Rift Valley fever emergence in semi-arid regions of West Africa

    Get PDF
    BACKGROUND: Rift Valley fever (RVF) is a vector-borne viral zoonosis of increasing global importance. RVF virus (RVFV) is transmitted either through exposure to infected animals or through bites from different species of infected mosquitoes, mainly of Aedes and Culex genera. These mosquitoes are very sensitive to environmental conditions, which may determine their presence, biology, and abundance. In East Africa, RVF outbreaks are known to be closely associated with heavy rainfall events, unlike in the semi-arid regions of West Africa where the drivers of RVF emergence remain poorly understood. The assumed importance of temporary ponds and rainfall temporal distribution therefore needs to be investigated. METHODOLOGY/PRINCIPAL FINDINGS: A hydrological model is combined with a mosquito population model to predict the abundance of the two main mosquito species (Aedes vexans and Culex poicilipes) involved in RVFV transmission in Senegal. The study area is an agropastoral zone located in the Ferlo Valley, characterized by a dense network of temporary water ponds which constitute mosquito breeding sites. The hydrological model uses daily rainfall as input to simulate variations of pond surface areas. The mosquito population model is mechanistic, considers both aquatic and adult stages and is driven by pond dynamics. Once validated using hydrological and entomological field data, the model was used to simulate the abundance dynamics of the two mosquito species over a 43-year period (1961–2003). We analysed the predicted dynamics of mosquito populations with regards to the years of main outbreaks. The results showed that the main RVF outbreaks occurred during years with simultaneous high abundances of both species. CONCLUSION/SIGNIFICANCE: Our study provides for the first time a mechanistic insight on RVFV transmission in West Africa. It highlights the complementary roles of Aedes vexans and Culex poicilipes mosquitoes in virus transmission, and recommends the identification of rainfall patterns favourable for RVFV amplification

    Effects of nanoparticles on murine macrophages

    Get PDF
    Metallic nanoparticles are more and more widely used in an increasing number of applications. Consequently, they are more and more present in the environment, and the risk that they may represent for human health must be evaluated. This requires to increase our knowledge of the cellular responses to nanoparticles. In this context, macrophages appear as an attractive system. They play a major role in eliminating foreign matter, e.g. pathogens or infectious agents, by phagocytosis and inflammatory responses, and are thus highly likely to react to nanoparticles. We have decided to study their responses to nanoparticles by a combination of classical and wide-scope approaches such as proteomics. The long term goal of this study is the better understanding of the responses of macrophages to nanoparticles, and thus to help to assess their possible impact on human health. We chose as a model system bone marrow-derived macrophages and studied the effect of commonly used nanoparticles such as TiO2 and Cu. Classical responses of macrophage were characterized and proteomic approaches based on 2D gels of whole cell extracts were used. Preliminary proteomic data resulting from whole cell extracts showed different effects for TiO2-NPs and Cu-NPs. Modifications of the expression of several proteins involved in different pathways such as, for example, signal transduction, endosome-lysosome pathway, Krebs cycle, oxidative stress response have been underscored. These first results validate our proteomics approach and open a new wide field of investigation for NPs impact on macrophagesComment: Nanosafe2010: International Conference on Safe Production and Use of Nanomaterials 16-18 November 2010, Grenoble, France, Grenoble : France (2010

    Gyrokinetic analysis and simulation of pedestals, to identify the culprits for energy losses using fingerprints

    Full text link
    Fusion performance in tokamaks hinges critically on the efficacy of the Edge Transport Barrier (ETB) at suppressing energy losses. The new concept of fingerprints is introduced to identify the instabilities that cause the transport losses in the ETB of many of today's experiments, from widely posited candidates. Analysis of the Gyrokinetic-Maxwell equations, and gyrokinetic simulations of experiments, find that each mode type produces characteristic ratios of transport in the various channels: density, heat and impurities. This, together with experimental observations of transport in some channel, or, of the relative size of the driving sources of channels, can identify or determine the dominant modes causing energy transport. In multiple ELMy H-mode cases that are examined, these fingerprints indicate that MHD-like modes are apparently not the dominant agent of energy transport; rather, this role is played by Micro-Tearing Modes (MTM) and Electron Temperature Gradient (ETG) modes, and in addition, possibly Ion Temperature Gradient (ITG)/Trapped Electron Modes (ITG/TEM) on JET. MHD-like modes may dominate the electron particle losses. Fluctuation frequency can also be an important means of identification, and is often closely related to the transport fingerprint. The analytical arguments unify and explain previously disparate experimental observations on multiple devices, including DIII-D, JET and ASDEX-U, and detailed simulations of two DIII-D ETBs also demonstrate and corroborate this

    Requirements modelling and formal analysis using graph operations

    Get PDF
    The increasing complexity of enterprise systems requires a more advanced analysis of the representation of services expected than is currently possible. Consequently, the specification stage, which could be facilitated by formal verification, becomes very important to the system life-cycle. This paper presents a formal modelling approach, which may be used in order to better represent the reality of the system and to verify the awaited or existing system’s properties, taking into account the environmental characteristics. For that, we firstly propose a formalization process based upon properties specification, and secondly we use Conceptual Graphs operations to develop reasoning mechanisms of verifying requirements statements. The graphic visualization of these reasoning enables us to correctly capture the system specifications by making it easier to determine if desired properties hold. It is applied to the field of Enterprise modelling

    Projet PASE SCV : rapport d'activités 2006

    Full text link
    corecore