2,048 research outputs found

    Mesoporous matrices for quantum computation with improved response through redundance

    Get PDF
    We present a solid state implementation of quantum computation, which improves previously proposed optically driven schemes. Our proposal is based on vertical arrays of quantum dots embedded in a mesoporous material which can be fabricated with present technology. The redundant encoding typical of the chosen hardware protects the computation against gate errors and the effects of measurement induced noise. The system parameters required for quantum computation applications are calculated for II-VI and III-V materials and found to be within the experimental range. The proposed hardware may help minimize errors due to polydispersity of dot sizes, which is at present one of the main problems in relation to quantum dot-based quantum computation. (c) 2007 American Institute of Physics

    Coulomb interaction effects in spin-polarized transport

    Get PDF
    We study the effect of the electron-electron interaction on the transport of spin polarized currents in metals and doped semiconductors in the diffusive regime. In addition to well-known screening effects, we identify two additional effects, which depend on many-body correlations and exchange and reduce the spin diffusion constant. The first is the "spin Coulomb drag" - an intrinsic friction mechanism which operates whenever the average velocities of up-spin and down-spin electrons differ. The second arises from the decrease in the longitudinal spin stiffness of an interacting electron gas relative to a noninteracting one. Both effects are studied in detail for both degenerate and non-degenerate carriers in metals and semiconductors, and various limiting cases are worked out analytically. The behavior of the spin diffusion constant at and below a ferromagnetic transition temperature is also discussed.Comment: 9 figure

    Measurement of Two-Qubit States by a Two-Island Single Electron Transistor

    Full text link
    We solve the master equations of two charged qubits measured by a single-electron transistor (SET) consisted of two islands. We show that in the sequential tunneling regime the SET current can be used for reading out results of quantum calculations and providing evidences of two-qubit entanglement, especially when the interaction between the two qubits is weak

    Spin-Orbit Twisted Spin Waves : Group Velocity Control

    Get PDF
    We present a theoretical and experimental study of the interplay between spin-orbit coupling (SOC), Coulomb interaction, and motion of conduction electrons in a magnetized two-dimensional electron gas. Via a transformation of the many-body Hamiltonian we introduce the concept of spin-orbit twisted spin waves, whose energy dispersions and damping rates are obtained by a simple wave-vector shift of the spin waves without SOC. These theoretical predictions are validated by Raman scattering measurements. With optical gating of the density, we vary the strength of the SOC to alter the group velocity of the spin wave. The findings presented here differ from that of spin systems subject to the Dzyaloshinskii-Moriya interaction. Our results pave the way for novel applications in spin-wave routing devices and for the realization of lenses for spin waves

    Discovery of Five Binary Radio Pulsars

    Get PDF
    We report on five binary pulsars discovered in the Parkes multibeam Galactic plane survey. All of the pulsars are old, with characteristic ages 1-11 Gyr, and have relatively small inferred magnetic fields, 5-90e8 G. The orbital periods range from 1.3 to 15 days. As a group these objects differ from the usual low-mass binary pulsars (LMBPs): their spin periods of 9-88 ms are relatively long; their companion masses, 0.2-1.1 Msun, are, in at least some cases, suggestive of CO or more massive white dwarfs; and some of the orbital eccentricities, 1e-5 < e < 0.002, are unexpectedly large. We argue that these observed characteristics reflect binary evolution that is significantly different from that of LMBPs. We also note that intermediate-mass binary pulsars apparently have a smaller scale-height than LMBPs.Comment: 5 pages, 4 embedded EPS figs, accepted for publication by ApJ Letter

    Discovery of a Young Radio Pulsar in a Relativistic Binary Orbit

    Get PDF
    We report on the discovery of PSR J1141-6545, a radio pulsar in an eccentric, relativistic 5-hr binary orbit. The pulsar shows no evidence for being recycled, having pulse period P = 394 ms, characteristic age tau_c = 1.4 x 10^6 yr, and inferred surface magnetic dipole field strength B = 1.3 x 10^12 G. From the mass function and measured rate of periastron advance, we determine the total mass in the system to be (2.300 +/- 0.012) solar masses, assuming that the periastron advance is purely relativistic. Under the same assumption, we constrain the pulsar's mass to be M_p < 1.348 solar masses and the companion's mass to be M_c > 0.968 solar masses (both 99% confidence). Given the total system mass and the distribution of measured neutron star masses, the companion is probably a massive white dwarf which formed prior to the birth of the pulsar. Optical observations can test this hypothesis.Comment: 18 pages, 4 figures, Accepted for Publication in Ap

    GBT Discovery of Two Binary Millisecond Pulsars in the Globular Cluster M30

    Full text link
    We report the discovery of two binary millisecond pulsars in the core-collapsed globular cluster M30 using the Green Bank Telescope (GBT) at 20 cm. PSR J2140-2310A (M30A) is an eclipsing 11-ms pulsar in a 4-hr circular orbit and PSR J2140-23B (M30B) is a 13-ms pulsar in an as yet undetermined but most likely highly eccentric (e>0.5) and relativistic orbit. Timing observations of M30A with a 20-month baseline have provided precise determinations of the pulsar's position (within 4" of the optical centroid of the cluster), and spin and orbital parameters, which constrain the mass of the companion star to be m_2 >~ 0.1Msun. The position of M30A is coincident with a possible thermal X-ray point source found in archival Chandra data which is most likely due to emission from hot polar caps on the neutron star. In addition, there is a faint (V_555 ~ 23.8) star visible in archival HST F555W data that may be the companion to the pulsar. Eclipses of the pulsed radio emission from M30A by the ionized wind from the compact companion star show a frequency dependent duration (\propto\nu^{-\alpha} with \alpha ~ 0.4-0.5) and delay the pulse arrival times near eclipse ingress and egress by up to 2-3 ms. Future observations of M30 may allow both the measurement of post-Keplerian orbital parameters from M30B and the detection of new pulsars due to the effects of strong diffractive scintillation.Comment: 10 pages, 6 figures, Submitted to ApJ. This version includes many recommended modifications, an improved structure, a new author, and a completely redone optical analysi

    Spin diffusion and injection in semiconductor structures: Electric field effects

    Full text link
    In semiconductor spintronic devices, the semiconductor is usually lightly doped and nondegenerate, and moderate electric fields can dominate the carrier motion. We recently derived a drift-diffusion equation for spin polarization in the semiconductors by consistently taking into account electric-field effects and nondegenerate electron statistics and identified a high-field diffusive regime which has no analogue in metals. Here spin injection from a ferromagnet (FM) into a nonmagnetic semiconductor (NS) is extensively studied by applying this spin drift-diffusion equation to several typical injection structures such as FM/NS, FM/NS/FM, and FM/NS/NS structures. We find that in the high-field regime spin injection from a ferromagnet into a semiconductor is enhanced by several orders of magnitude. For injection structures with interfacial barriers, the electric field further enhances spin injection considerably. In FM/NS/FM structures high electric fields destroy the symmetry between the two magnets at low fields, where both magnets are equally important for spin injection, and spin injection becomes locally determined by the magnet from which carriers flow into the semiconductor. The field-induced spin injection enhancement should also be insensitive to the presence of a highly doped nonmagnetic semiconductor (NS+^+) at the FM interface, thus FM/NS+^+/NS structures should also manifest efficient spin injection at high fields. Furthermore, high fields substantially reduce the magnetoresistance observable in a recent experiment on spin injection from magnetic semiconductors

    Accurate mass ratio and heating effects in the dual-line millisecond binary pulsar in NGC 6397

    Get PDF
    By means of high-resolution spectra we have measured radial velocities of the companion (hereafter COM J1740-5340) to the eclipsing millisecond pulsar PSR J1740-5340 in the Galactic globular cluster NGC 6397. The radial-velocity curve fully confirms that COM J1740-5340 is orbiting the pulsar and enables us to derive the most accurate mass ratio (M_ PSR/M_COM=5.85+/-0.13) for any non-relativistic binary system containing a neutron star. Assuming a pulsar mass in the range 1.3-1.9 Msun, the mass of COM J1740-5340 spans the interval 0.22-0.32 Msun, the inclination of the system is constrained within 56 deg <= i <= 47 deg and the Roche lobe radius is r_RL ~ 1.5-1.7 Rsun. A preliminary chemical abundance analysis confirms that COM J1740-5340 has a metallicity compatible with that measured for other stars in this metal-poor globular, but the unexpected detection of strong He I absorption lines implies the existence of regions at T>10,000 K, significantly warmer than the rest of the star. The intensity of this line correlates with the orbital phase, suggesting the presence of a region on the companion surface, heated by the millisecond pulsar flux.Comment: 13 pages, 3 figures, in press on ApJ Letters (Feb. 10

    Nazi Punks Folk Off: Leisure, Nationalism, Cultural Identity and the Consumption of Metal and Folk Music

    Get PDF
    Far-right activists have attempted to infiltrate and use popular music scenes to propagate their racialised ideologies. This paper explores attempts by the far right to co-opt two particular music scenes: black metal and English folk. Discourse tracing is used to explore online debates about boundaries, belonging and exclusion in the two scenes, and to compare such online debates with ethnographic work and previous research. It is argued that both scenes have differently resisted the far right through the policing of boundaries and communicative choices, but both scenes are compromised by their relationship to myths of whiteness and the instrumentality of the pop music industry
    • 

    corecore