We study the effect of the electron-electron interaction on the transport of
spin polarized currents in metals and doped semiconductors in the diffusive
regime. In addition to well-known screening effects, we identify two additional
effects, which depend on many-body correlations and exchange and reduce the
spin diffusion constant. The first is the "spin Coulomb drag" - an intrinsic
friction mechanism which operates whenever the average velocities of up-spin
and down-spin electrons differ. The second arises from the decrease in the
longitudinal spin stiffness of an interacting electron gas relative to a
noninteracting one. Both effects are studied in detail for both degenerate and
non-degenerate carriers in metals and semiconductors, and various limiting
cases are worked out analytically. The behavior of the spin diffusion constant
at and below a ferromagnetic transition temperature is also discussed.Comment: 9 figure