140 research outputs found

    Structural and functional characterization of phosphomimetic mutants of cytochrome c at threonine 28 and serine 47

    Get PDF
    Protein function is frequently modulated by post-translational modifications of specific residues. Cytochrome c, in particular, is phosphorylated in vivo at threonine 28 and serine 47. However, the effect of such modifications on the physiological functions of cytochrome c – namely, the transfer of electrons in the respiratory electron transport chain and the triggering of programmed cell death – is still unknown. Here we replace each of these two residues by aspartate, in order to mimic phosphorylation, and report the structural and functional changes in the resulting cytochrome c variants. We find that the T28D mutant causes a 30-mV decrease on the midpoint redox potential and lowers the affinity for the distal site of Arabidopsis thaliana cytochrome c1 in complex III. Both the T28D and S47D variants display a higher efficiency as electron donors for the cytochrome c oxidase activity of complex IV. In both protein mutants, the peroxidase activity is significantly higher, which is related to the ability of cytochrome c to leave the mitochondria and reach the cytoplasm. We also find that both mutations at serine 47 (S47D and S47A) impair the ability of cytoplasmic cytochrome c to activate the caspases cascade, which is essential for triggering programmed cell death.Peer reviewe

    Oxidative stress is tightly regulated by cytochrome c phosphorylation and respirasome factors in mitochondria

    Get PDF
    Respiratory cytochrome c has been found to be phosphorylated at tyrosine 97 in the postischemic brain upon neuroprotective insulin treatment, but how such posttranslational modification affects mitochondrial metabolism is unclear. Here, we report the structural features and functional behavior of a phosphomimetic cytochrome c mutant, which was generated by site-specific incorporation at position 97 of p-carboxymethyl-l-phenylalanine using the evolved tRNA synthetase method. We found that the point mutation does not alter the overall folding and heme environment of cytochrome c, but significantly affects the entire oxidative phosphorylation process. In fact, the electron donation rate of the mutant heme protein to cytochrome c oxidase, or complex IV, within respiratory supercomplexes was higher than that of the wild-type species, in agreement with the observed decrease in reactive oxygen species production. Direct contact of cytochrome c with the respiratory supercomplex factor HIGD1A (hypoxia-inducible domain family member 1A) is reported here, with the mutant heme protein exhibiting a lower affinity than the wild-type species. Interestingly, phosphomimetic cytochrome c also exhibited a lower caspase-3 activation activity. Altogether, these findings yield a better understanding of the molecular basis for mitochondrial metabolism in acute diseases, such as brain ischemia, and thus could allow the use of phosphomimetic cytochrome c as a neuroprotector with therapeutic applications.España, Junta de Andalucía BIO-198España MINECO BFU2015-71017/BM

    The cytochrome f–plastocyanin complex as a model to study transient interactions between redox proteins

    Get PDF
    AbstractTransient complexes, with a lifetime ranging between microseconds and seconds, are essential for biochemical reactions requiring a fast turnover. That is the case of the interactions between proteins engaged in electron transfer reactions, which are involved in relevant physiological processes such as respiration and photosynthesis. In the latter, the copper protein plastocyanin acts as a soluble carrier transferring electrons between the two membrane-embedded complexes cytochrome b6f and photosystem I. Here we review the combination of experimental efforts in the literature to unveil the functional and structural features of the complex between cytochrome f and plastocyanin, which have widely been used as a suitable model for analyzing transient redox interactions

    Antimalarial activity of cupredoxins: the interaction of Plasmodium Merozoite Surface Protein 119 (MSP119) and Rusticyanin

    Get PDF
    Background: The interaction of MSP119 with the cupredoxin azurin inhibits the growth of Plasmodium falciparum in red blood cells. Results: Rusticyanin forms a well-defined complex with MSP119 upon binding at the same surface area than inhibitory antibodies. Conclusion: Rusticyanin becomes an excellent therapeutic agent for malaria. Significance: Knowing the rusticyanin- MSP119 interface will allow the design of novel anti-malarial drugsJunta de Andalucía P08-CVI-3876, BIO198Ministerio de Economía y Competitividad SAF2011- 26611Fundación Séneca de la Región de Murcia 15354/PI/10Ministerio de Ciencia e Innovación BFU2010-19451Medical Research Council U117574558, U11753206

    Appropriate use of red blood cell transfusion in emergency departments: A study in five emergency departments

    Full text link
    BACKGROUND: Transfusion of blood components continues to be an important therapeutic resource into the 21st century. Between 5 and 58% of transfusions carried out are estimated to be unnecessary. According to several studies, at least 20% of packed red blood cell transfusions (RBCT) are administered in hospital emergency departments (ED), but few data are available about the appropriateness of RBCT in this setting. This multicentre, cross-sectional observational study aims to assess the appropriateness of RBCT indications and transfused volumes in patients who attend ED. MATERIALS AND METHODS: The study cohort is made up of consecutive consenting adult patients (≥18 years old) who received RBCT in ED over a 3-month period and for whom relevant clinical data were collected and analysed. RESULTS: Data from 908 RBCT episodes (2±1 units per transfused patient) were analysed. RBCT was considered appropriate in 21.4% (n=195), with significant differences according to RBCT indication (p<0.001), hospital level (p<0.001) and prescribing physician (p=0.002). Pre-transfusion haemoglobin level (Hb) negatively correlated with RBCT appropriateness (r=-0.616; p<0.01). Only 72.4% of appropriate RBCT had a post-transfusion Hb assessment (n=516). Of these, 45% were considered to be over-transfused (n=232), with significant differences according to RBCT indication (p=0.012) and prescribing physician (p=0.047). Overall, 584/1,433 (41%) of evaluable RBC units were unnecessarily transfused. DISCUSSION: The appropriateness of RBCT in ED is similar to other hospital departments, but the rate of over-transfusion was high. These data support the need for a reassessment after transfusion of each RBC unit before further units are prescribed. In view of these results, we recommend that physicians should be made more aware of the need to prescribe RBCT appropriately in order to reduce over-transfusionThis project has received funding from the Spanish Ministry of Health, Social Policy and Equality through the SAS/2377/2010 call for granting aid for the promotion of independent clinical research (Department of Pharmacy and Health Products), file n. EC10-21

    The atypical iron-coordination geometry of cytochrome f remains unchanged upon binding to plastocyanin, as inferred by XAS

    Get PDF
    The transient complex between cytochrome f and plastocyanin from the cyanobacterium Nostoc sp. PCC 7119 has been analysed by X-ray Absorption Spectroscopy in solution, using both proteins in their oxidized and reduced states. Fe K-edge data mainly shows that the atypical metal coordination geometry of cytochrome f, in which the N-terminal amino acid acts as an axial ligand of the heme group, remains unaltered upon binding to its redox partner, plastocyanin. This fact suggests that cytochrome f provides a stable binding site for plastocyanin and minimizes the reorganization energy required in the transient complex formation, which could facilitate the electron transfer between the two redox partners

    Structural basis of mitochondrial dysfunction in response to cytochrome c phosphorylation at tyrosine 48

    Get PDF
    Regulation of mitochondrial activity allows cells to adapt to changing conditions and to control oxidative stress, and its dysfunction can lead to hypoxia-dependent pathologies such as ischemia and cancer. Although cytochrome c phosphorylation—in particular, at tyrosine 48—is a key modulator of mitochondrial signaling, its action and molecular basis remain unknown. Here we mimic phosphorylation of cytochrome c by replacing tyrosine 48 with p-carboxy-methyl-L-phenylalanine (pCMF). The NMR structure of the resulting mutant reveals significant conformational shifts and enhanced dynamics around pCMF that could explain changes observed in its functionality: The phosphomimetic mutation impairs cytochrome c diffusion between respiratory complexes, enhances hemeprotein peroxidase and reactive oxygen species scavenging activities, and hinders caspase-dependent apoptosis. Our findings provide a framework to further investigate the modulation of mitochondrial activity by phosphorylated cytochrome c and to develop novel therapeutic approaches based on its prosurvival effects.Financial support was provided by the Spanish Ministry of Economy and Competitiveness (Grants BFU2015-71017-P/BMC and BFU2015-19451/BMC, cofounded by FEDER EU), European Union (Bio-MR-00130 and CALIPSO-312284), Ramon Areces Foundation, and Andalusian Government (BIO198). B.M.-B. was awarded a PhD fellowship from the Spanish Ministry of Education (AP2009-4092) and a short-term traveling fellowship from the European Bio-NMR Project. A.G.-C. was awarded a PhD fellowship from the CSIC (JaePre-2011-01248).Peer reviewe

    Organic distributed feedback laser to monitor solvent extraction upon thermal annealing in solution-processed polymer films

    Get PDF
    Solution-processed polymer films are used in multiple technological applications. The presence of residual solvent in the film, as a consequence of the preparation method, affects the material properties, so films are typically subjected to post-deposition thermal annealing treatments aiming at its elimination. Monitoring the amount of solvent eliminated as a function of the annealing parameters is important to design a proper treatment to ensure complete solvent elimination, crucial to obtain reproducible and stable material properties and therefore, device performance. Here we demonstrate, for the first time to our knowledge, the use of an organic distributed feedback (DFB) laser to monitor with high precision the amount of solvent extracted from a spin-coated polymer film as a function of the thermal annealing time. The polymer film of interest, polystyrene in the present work, is doped with a small amount of a laser dye as to constitute the active layer of the laser device and deposited over a reusable DFB resonator. It is shown that solvent elimination translates into shifts in the DFB laser wavelength, as a consequence of changes in film thickness and refractive index. The proposed method is expected to be applicable to other types of annealing treatments, polymer-solvent combinations or film deposition methods, thus constituting a valuable tool to accurately control the quality and reproducibility of solution-processed polymer thin films.The work was supported by the Spanish Government (MINECO) and the European Community (FEDER) through grant No. MAT-2011-28167-C02-01. M.M.-V. has been partly supported by a MINECO FPI fellowship (No. BES-2009-020747)

    Phosphorylation disrupts long-distance electron transport in cytochrome c

    Get PDF
    It has been recently shown that electron transfer between mitochondrial cytochrome c and the cytochrome c1 subunit of the cytochrome bc1 can proceed at long-distance through the aqueous solution. Cytochrome c is thought to adjust its activity by changing the affinity for its partners via Tyr48 phosphorylation, but it is unknown how it impacts the nanoscopic environment, interaction forces, and long-range electron transfer. Here, we constrain the orientation and separation between cytochrome c1 and cytochrome c or the phosphomimetic Y48pCMF cytochrome c, and deploy an array of single-molecule, bulk, and computational methods to investigate the molecular mechanism of electron transfer regulation by cytochrome c phosphorylation. We demonstrate that phosphorylation impairs long-range electron transfer, shortens the long-distance charge conduit between the partners, strengthens their interaction, and departs it from equilibrium. These results unveil a nanoscopic view of the interaction between redox protein partners in electron transport chains and its mechanisms of regulation
    corecore