28 research outputs found

    Identification of new candidate genes for germline predisposition to familial colorectal cancer using somatic mutational profiling

    Get PDF
    [eng] Colorectal cancer (CRC) is one of the malignant neoplasms with higher incidence and mortality in Spain, Europe and worldwide. As a complex disease, both environmental and genetic factors influence CRC predisposition. Up to 35% of CRC patients present familial aggregation for the disease, whereas only around 2-8% of cases are linked to a well-known hereditary syndrome associated to pathogenic germline alterations in specific genes, namely APC, MUTYH, POLE, POLD1 or the DNA mismatch repair genes. During last years, next generation sequencing (NGS) techniques such as whole exome sequencing (WES) have been used to address this gap of missing heritability. Characterization of somatic mutational profiles, performed by the application of NGS to both germline and tumor DNA, has also been recently established as a powerful tool to identify novel genes linked to CRC predisposition. However, although some bioinformatic packages have been developed to address this analysis, it remains inaccessible for a substantial proportion of the scientific community. Accordingly, the main purpose of this doctoral thesis was to identify new genes involved in germline predisposition to familial CRC, by using an integrated germline-tumor WES analysis and somatic mutational profiling, as well as facilitating the application of these genomic analyses to the scientific community. As a first step, a bioinformatic tool to deal with somatic mutational profiling was developed. Shiny framework was used to build MuSiCa, a user-friendly web application freely accessible and potentially useful for non-specialized researchers. Tumor mutational burden calculation and mutational signature refitting analysis according to the information present in COSMIC database is available, as well as different options for sample classification through clustering and principal component analysis. Subsequently, an integrated germline-tumor analysis was implemented in a cohort of 18 familial CRC unrelated patients. WES data of both germline and tumor DNA was available, allowing the identification of new potential tumor suppressor genes according to Knudson’s two-hit hypothesis. Benefitting from the development of MuSiCa application, somatic mutational profiling was also analyzed, uncovering five hypermutated samples. An enrichment of DNA repair-associated genes was found, as well as some genes previously linked to predisposition syndromes to other cancer types. BRCA2, BLM, ERCC2, RECQL, REV3L and RIF1 were found as the most promising candidate genes for germline CRC predisposition. Interestingly, a germline mutation was found in the DNA repair gene RECQL in a patient with one of the hypermutated tumors, reinforcing the putative role of this gene in hereditary CRC. These findings could be helpful in clinical practice improving genetic counseling in the affected families.[spa] El cáncer colorrectal (CCR) es una de las neoplasias con mayor incidencia y mortalidad en España y el mundo. Aunque un 35% de los pacientes presentan agregación familiar, sólo un 2-8% se asocia con un síndrome hereditario conocido, causado por mutaciones germinales en genes como APC, MUTYH, POLE, POLD1 o los genes del sistema de reparación del ADN por mal apareamiento de bases. En los últimos años, las técnicas de secuenciación de nueva generación (SNG), como la secuenciación del exoma completo (SEC), han sido utilizadas para el descubrimiento de nuevos genes implicados en la predisposición al CCR. La caracterización de los perfiles mutacionales somáticos, aplicando SNG al ADN germinal y tumoral, también se ha utilizado recientemente en este proceso. Sin embargo, aunque se han desarrollado algunos paquetes bioinformáticos para su análisis, todavía permanece inaccesible para una gran parte de la comunidad científica. En consecuencia, el objetivo principal de esta tesis doctoral ha sido el de identificar nuevos genes implicados en la predisposición germinal al CCR familiar, utilizando un análisis de SEC germinal-tumoral y caracterización mutacional somática, así como facilitar la aplicación de estos análisis genómicos a la comunidad científica. En primer lugar, se llevó a cabo el desarrollo de una herramienta bioinformática denominada Mutational Signatures in Cancer (MuSiCa), una aplicación web de manejo sencillo y acceso libre desarrollada a través de la plataforma Shiny, que permite el cálculo de la carga mutacional tumoral y la caracterización de las firmas mutacionales según la información disponible en la base de datos COSMIC. Posteriormente, se implementó un análisis integrado de SEC germinal-tumoral en una cohorte de 18 pacientes de CCR familiar, complementado con una caracterización mutacional somática, gracias al desarrollo de MuSiCa. Se detectaron cinco tumores hipermutados, así como un enriquecimiento de mutaciones germinales en genes involucrados previamente en síndromes de predisposición a otros tipos de cáncer y a la reparación del ADN. Los genes BRCA2, BLM, ERCC2, RECQL, REV3L y RIF1 fueron priorizados como los más prometedores de cara a la predisposición al CCR. Estos descubrimientos podrían ser de utilidad en la práctica clínica, mejorando el consejo genético en las familias afectadas

    CNApp, a tool for the quantification of copy number alterations and integrative analysis revealing clinical implications.

    Get PDF
    Somatic copy number alterations (CNAs) are a hallmark of cancer, but their role in tumorigenesis and clinical relevance remain largely unclear. Here, we developed CNApp, a web-based tool that allows a comprehensive exploration of CNAs by using purity-corrected segmented data from multiple genomic platforms. CNApp generates genome-wide profiles, computes CNA scores for broad, focal and global CNA burdens, and uses machine learning-based predictions to classify samples. We applied CNApp to the TCGA pan-cancer dataset of 10,635 genomes showing that CNAs classify cancer types according to their tissue-of-origin, and that each cancer type shows specific ranges of broad and focal CNA scores. Moreover, CNApp reproduces recurrent CNAs in hepatocellular carcinoma and predicts colon cancer molecular subtypes and microsatellite instability based on broad CNA scores and discrete genomic imbalances. In summary, CNApp facilitates CNA-driven research by providing a unique framework to identify relevant clinical implications. CNApp is hosted at https://tools.idibaps.org/CNApp/

    Evaluation of serum omentin-1 and apelin concentrations in patients with hidradenitis suppurativa

    Get PDF
    Introduction: Recent studies suggest a role of adipokines in the pathogenesis of hidradenitis suppurativa (HS). Omentin-1 and apelin are two recently identified adipokines that have been involved in the regulation of metabolic and inflammatory responses. Aim: To investigate serum omentin-1 and apelin levels in patients with HS and to assess their associations with metabolic parameters, disease severity and HS risk. Material and methods: This case-control study included 139 non-diabetic individuals (78 HS patients and 61 ageand sex-matched controls). Serum concentrations of omentin-1 and apelin and the homeostasis model assessment of insulin resistance (HOMA-IR) were measured in all participants. Results: Serum omentin-1 concentrations were significantly higher in HS patients compared to controls, whereas apelin serum levels did not significantly differ between both groups. These differences in omentin-1 concentrations remained significant even after adjusting for age, sex, and body mass index (BMI). The results of logistic regression analysis showed that increased omentin-1 plasma levels were an independent risk factor for HS. However, we found no association between serum levels of both omentin-1 and apelin with HS severity. Conclusions: Our results show that patients with HS have raised omentin-1 serum levels, which are associated with HS risk

    Identification of a Novel Candidate Gene for Serrated Polyposis Syndrome Germline Predisposition by Performing Linkage Analysis Combined With Whole-Exome Sequencing

    Get PDF
    SUPPLEMENTARY MATERIAL accompanies this paper athttp://links.lww.com/CTG/A114OBJECTIVES: Serrated polyposis syndrome (SPS) is a complex disorder with a high risk of colorectal cancer for which the germline factors remain largely unknown. Here, we combined whole-exome sequencing (WES) and linkage studies in families with multiple members affected by SPS to identify candidate genes harboring rare variants with higher penetrance effects. METHODS: Thirty-nine affected subjects from 16 extended SPS families underwent WES. Genome-wide linkage analysis was performed under linear and exponential models. The contribution of rare coding variants selected to be highly pathogenic was assessed using the gene-based segregation test. RESULTS: significant linkage peak was identified on chromosome 3p25.2-p22.3 (maxSNP = rs2293787; LODlinear = 2.311, LODexp = 2.11), which logarithm of the odds (LOD) score increased after fine mapping for the same marker (maxSNP = rs2293787; LODlinear = 2.4, LODexp = 2.25). This linkage signal was replicated in 10 independent sets of random markers from this locus. To assess the contribution of rare variants predicted to be pathogenic, we performed a family-based segregation test with 11 rare variants predicted to be deleterious from 10 genes under the linkage intervals. This analysis showed significant segregation of rare variants with SPS in CAPT7, TMEM43, NGLY1, and FBLN2 genes (weighted Pvalue > 0.007). DISCUSSION: Protein network analysis suggested FBLN2 as the most plausible candidate genes for germline SPS predisposition. Etiologic rare variants implicated in disease predisposition may be identified by combining traditional linkage with WES data. This powerful approach was effective for the identification of a new candidate gene for hereditary SPS.M.D.-G. was supported by a contract from Agencia de Gestio d'Ajuts Universitaris i de Recerca (AGAUR) (Generalitat de Catalunya, 2018FI_B1_00213). S.F.-E., C.A.-C. and J.M. were supported by a contract from CIBEREHD. Y.S.L. was supported by a fellowship (LCF/BQ/DI18/11660058) from "la Caixa" Foundation (ID 100010434) funded EU Horizon 2020 Programme (Marie Sklodowska-Curie grant agreement no. 713673). LB was supported by a Juan de la Cierva postdoctoral contract (FJCI-2017-32593). CIBEREHD and CIBERONC are funded by the Instituto de Salud Carlos III. CT, BJO, and JMF were supported by Australian National Health and Medical Research (NHMRC) Project Grants 1063960 and 1066177. This research was supported by grants from Fondo de Investigacion Sanitaria/FEDER (16/00766, 17/00878), Fundacion Cientifica de la Asociacion Espanola contra el Cancer (GCB13131592CAST), PERIS (SLT002/16/00398, Generalitat de Catalunya), CERCA Programme (Generalitat de Catalunya), and Agencia de Gestio d'Ajuts Universitaris i de Recerca (Generalitat de Catalunya, GRPRE 2017SGR21, GRC 2017SGR653). This article is based on work from COST Action CA17118, supported by COST (European Cooperation in Science and Technology). www.cost.eu.Potential competing interests: None to report

    Colorectal Cancer Genetic Variants Are Also Associated with Serrated Polyposis Syndrome Susceptibility

    Get PDF
    Background Serrated polyposis syndrome (SPS) is a clinical entity characterised by large and/ormultiple serrated polyps throughout the colon and increased risk for colorectal cancer (CRC). The basis for SPS genetic predisposition is largely unknown. Common, low-penetrance genetic variants have been consistently associated with CRC susceptibility, however, their role in SPS genetic predisposition has not been yet explored. Objective The aim of this study was to evaluate if common, low-penetrance genetic variants for CRC risk are also implicated in SPS genetic susceptibility. Methods A case-control study was performed in 219 SPS patients and 548 asymptomatic controls analysing 65 CRC susceptibility variants. A risk prediction model for SPS predisposition was developed. Results Statistically significant associations with SPS were found for seven genetic variants (rs4779584-GREM1, rs16892766-EIF3H, rs3217810-CCND2, rs992157-PNKD1/TMBIM1, rs704017-ZMIZ1, rs11196172-TCF7L2, rs6061231-LAMA5). TheGREM1risk allele was remarkably over-represented in SPS cases compared with controls (OR=1.573, 1.21-2.04, p value=0.0006). A fourfold increase in SPS risk was observed when comparing subjects within the highest decile of variants (>= 65) with those in the first decile (<= 50). Conclusions Genetic variants for CRC risk are also involved in SPS susceptibility, being the most relevant ones rs4779584-GREM1, rs16892766-EIF3Hand rs3217810-CCND2.CA--C, JM and JJL were supported by a contract from CIBEREHD. YSdL was supported by a fellowship (LCF/BQ/DI18/11660058) from 'la Caixa' Foundation (ID 100010434) funded EU Horizon 2020 Programme (Marie Sklodowska-Curie grant agreement no. 713673). LB was supported by a Juan de la Cierva postdoctoral contract (FJCI-2017-32593) and MD-G by a contract from Agencia de Gestio d'Ajuts Universitaris i de Recerca, AGAUR, (Generalitat de Catalunya, 2018FI_B1_00213). CIBEREHD, CIBERER, CIBERESP and CIBERONC are funded by the Instituto de Salud Carlos III. This research was supported by grants from Fondo de Investigacion Sanitaria/FEDER (14/00613, 16/00766, 17/00509, 17/00878), Fundacion Cientifica de la Asociacion Espanola contra el Cancer (GCB13131592CAST), Spanish Ministry of Science, Innovation and Universities, co-funded by FEDER funds, (SAF201680888--R), PERIS (SLT002/16/00398, SLT002/16/0037, Generalitat de Catalunya), CERCA Programme (Generalitat de Catalunya) and Agencia de Gestio d'Ajuts Universitaris i de Recerca (Generalitat de Catalunya, GRPRE 2017SGR21, GRC 2017SGR653, 2017SGR1282, 2017SGR723). This article is based upon work from COST Action CA17118, supported by European Cooperation in Science and Technology (COST). www.cost.eu

    Colorectal cancer genetic variants are also associated with serrated polyposis syndrome susceptibility

    Get PDF
    Background: Serrated polyposis syndrome (SPS) is a clinical entity characterised by large and/ormultiple serrated polyps throughout the colon and increased risk for colorectal cancer (CRC). The basis for SPS genetic predisposition is largely unknown. Common, low-penetrance genetic variants have been consistently associated with CRC susceptibility, however, their role in SPS genetic predisposition has not been yet explored. Objective: The aim of this study was to evaluate if common, low-penetrance genetic variants for CRC risk are also implicated in SPS genetic susceptibility. Methods: A case-control study was performed in 219 SPS patients and 548 asymptomatic controls analysing 65 CRC susceptibility variants. A risk prediction model for SPS predisposition was developed. Results: Statistically significant associations with SPS were found for seven genetic variants (rs4779584-GREM1, rs16892766-EIF3H, rs3217810-CCND2, rs992157-PNKD1/TMBIM1, rs704017-ZMIZ1, rs11196172-TCF7L2, rs6061231-LAMA5). The GREM1 risk allele was remarkably over-represented in SPS cases compared with controls (OR=1.573, 1.21-2.04, p value=0.0006). A fourfold increase in SPS risk was observed when comparing subjects within the highest decile of variants (≥65) with those in the first decile (≤50). Conclusions: Genetic variants for CRC risk are also involved in SPS susceptibility, being the most relevant ones rs4779584-GREM1, rs16892766-EIF3H and rs3217810-CCND2

    Using linkage studies combined with whole-exome sequencing to identify novel candidate genes for familial colorectal cancer

    Get PDF
    Colorectal cancer (CRC) is a complex disorder for which the majority of the underlying germline predisposition factors remain still unidentified. Here, we combined whole‐exome sequencing (WES) and linkage analysis in families with multiple relatives affected by CRC to identify candidate genes harboring rare variants with potential high‐penetrance effects. Forty‐seven affected subjects from 18 extended CRC families underwent WES. Genome‐wide linkage analysis was performed under linear and exponential models. Suggestive linkage peaks were identified on chromosomes 1q22-q24.2 (maxSNP = rs2134095; LODlinear = 2.38, LODexp = 2.196), 7q31.2-q34 (maxSNP = rs6953296; LODlinear = 2.197, LODexp = 2.149) and 10q21.2-q23.1 (maxSNP = rs1904589; LODlinear = 1.445, LODexp = 2.195). These linkage signals were replicated in 10 independent sets of random markers from each of these regions. To assess the contribution of rare variants predicted to be pathogenic, we performed a family‐based segregation test with 89 rare variants predicted to be deleterious from 78 genes under the linkage intervals. This analysis showed significant segregation of rare variants with CRC in 18 genes (weighted p‐value > 0.0028). Protein network analysis and functional evaluation were used to suggest a plausible candidate gene for germline CRC predisposition. Etiologic rare variants implicated in cancer germline predisposition may be identified by combining traditional linkage with WES data. This approach can be used with already available NGS data from families with several sequenced members to further identify candidate genes involved germline predisposition to disease. This approach resulted in one candidate gene associated with increased risk of CRC but needs evidence from further studies

    Disease activity influences cardiovascular risk reclassification based on carotid ultrasound in patients with psoriatic arthritis

    Get PDF
    ABSTRACT: Objective. Because the addition of carotid ultrasound (US) into composite cardiovascular (CV) risk scores has been found effective for identifying patients with inflammatory arthritis and high CV risk, we aimed to determine whether its use would facilitate the reclassification of patients with psoriatic arthritis (PsA) into the very high Systematic Coronary Risk Evaluation (SCORE) risk category and whether this might be related to disease features. Methods. This was a cross-sectional study involving 206 patients who fulfilled ClASsification for Psoriatic ARthritis criteria for PsA, and 179 controls. We assessed lipid profile, SCORE, disease activity measurements, and the presence of carotid plaques and carotid intima-media thickness by ultrasonography. A multivariable regression analysis, adjusted for classic CV risk factors, was performed to evaluate whether the risk of reclassification could be explained by disease-related features and to assess the most parsimonious combination of risk reclassification predictors. Results. Forty-seven percent of patients were reclassified into a very high SCORE risk category after carotid US compared to 26% of controls (p < 0.001). Patients included in the low SCORE risk category were those who were more commonly reclassified (30% vs 14%, p = 0.002). The Disease Activity Index for PsA (DAPSA) score was associated with reclassification (? 1.10, 95% CI 1.02?1.19; p = 0.019) after adjusting for age and traditional CV risk factors. A model containing SCORE plus age, statin use, and DAPSA score yielded the highest discriminatory accuracy compared to the SCORE-alone model (area under the receiver-operating characteristic curve 0.863, 95% CI 0.789?0.936 vs 0.716, 95% CI 0.668?0.764; p < 0.001). Conclusion. Patients with PsA are more frequently reclassified into the very high SCORE risk category following carotid US assessment than controls. This was independently explained by the disease activity.Funding: This work was supported by a grant to I.F-A. from the Spanish Ministry of Health, Subdirección General de Evaluación y Fomento de la Investigación, Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016 and by Fondo Europeo de Desarrollo Regional -FEDER - (Fondo de Investigaciones Sanitarias, FIS PI14/00394, PI17/00083) Professor González-Gay research was supported by European Union FEDER funds and by the “Fondo de Investigación Sanitaria” (grants PI06/0024, PS09/00748, PI12/00060, PI15/00525 and PI18/00043) of the ‘Instituto de Salud Carlos III’ (ISCIII, Health Ministry, Spain). It was also partially supported by RETICS Programs RD12/0009 (RIER), RD12/0009/0013 and RD16/0012 from the ‘Instituto de Salud Carlos III’ (ISCIII, Health Ministry, Spain)

    Association of Trabecular Bone Score with Inflammation and Adiposity in Patients with Psoriasis: Effect of Adalimumab Therapy

    Get PDF
    Studies on trabecular bone score (TBS) in psoriasis are lacking. We aim to assess the association between TBS and inflammation, metabolic syndrome features, and serum adipokines in 29 nondiabetic patients with psoriasis without arthritis, before and after 6-month adalimumab therapy. For that purpose, adjusted partial correlations and stepwise multivariable linear regression analysis were performed. No correlation was found between TBS and disease severity. TBS was negatively associated with weight, BMI, waist perimeter, fat percentage, and systolic and diastolic blood pressure before and after adalimumab. After 6months of therapy, a negative correlation between TBS and insulin resistance (?? = 0.02) and leptin (?? = 0.01) and a positive correlationwith adiponectin were found (?? = 0.01).The best set of predictors for TBS values at baseline were female sex (?? = 0.015), age (?? = 0.05), and BMI (?? = 0.001). The best set of predictors for TBS following 6 months of biologic therapy were age (?? = 0.001), BMI (?? < 0.0001), and serumadiponectin levels (?? = 0.027). In conclusion, in nondiabetic patients withmoderate-to-severe psoriasis, TBS correlates with metabolic syndrome features and inflammation.This association is still present after 6 months of adalimumab therapy. Moreover, serum adiponectin levels seem to be an independent variable related to TBS values, after adalimumab therapy

    Germline Mutations in FAF1 Are Associated With Hereditary Colorectal Cancer

    Get PDF
    Background & aims: A significant proportion of colorectal cancer (CRC) cases have familial aggregation but little is known about the genetic factors that contribute to these cases. We performed an exhaustive functional characterization of genetic variants associated with familial CRC. Methods: We performed whole-exome sequencing analyses of 75 patients from 40 families with a history of CRC (including early-onset cases) of an unknown germline basis (discovery cohort). We also sequenced specific genes in DNA from an external replication cohort of 473 families, including 488 patients with colorectal tumors that had normal expression of mismatch repair proteins (validation cohort). We disrupted the Fas-associated factor 1 gene (FAF1) in DLD-1 CRC cells using CRISPR/Cas9 gene editing; some cells were transfected with plasmids that express FAF1 missense variants. Cells were analyzed by immunoblots, quantitative real-time polymerase chain reaction, and functional assays monitoring apoptosis, proliferation, and assays for Wnt signaling or nuclear factor (NF)-kappa-B activity. Results: We identified predicted pathogenic variant in the FAF1 gene (c.1111G>A; p.Asp371Asn) in the discovery cohort; it was present in 4 patients of the same family. We identified a second variant in FAF1 in the validation cohort (c.254G>C; p.Arg85Pro). Both variants encoded unstable FAF1 proteins. Expression of these variants in CRC cells caused them to become resistant to apoptosis, accumulate beta-catenin in the cytoplasm, and translocate NF-kappa-B to the nucleus. Conclusions: In whole-exome sequencing analyses of patients from families with a history of CRC, we identified variants in FAF1 that associate with development of CRC. These variants encode unstable forms of FAF1 that increase resistance of CRC cells to apoptosis and increase activity of beta-catenin and NF-kappa-B
    corecore