564 research outputs found

    Electrochemical behavior of chloramphenicol on carbon electrodes in a microelectrochemical cell

    Get PDF
    Express determination of antibiotics is an extremely important task today. Portable electrochemical microdevices are a viable alternative to traditional methods of analysis. The development of such devices requires the study of redox processes in detail. This article is devoted to the comparative study of the electrochemical behavior of chloramphenicol in water solvents in standard laboratory and portable microelectrochemical cells. It was found that the electrochemical reduction of chloramphenicol proceeds via a 3-electron mechanism to the formation of a dimer. In the transition from the macrocell to the microcell, a decrease in the electrochemical reduction current and a shift of the peak potential to the cathode region are observed, which is apparently associated mainly with the type of the electrode material. The best characteristics of the direct electrochemical response were obtained in the differential pulse voltammetry mode. Under the selected operating parameters, the peak current of the electrochemical reduction of chloramphenicol is linearly dependent on the concentration of the antibiotic in the range of 2∙10–3–1∙10–5 M with a detection limit of 3∙10–5 M. Obtained characteristics are sufficient for the quality control of pharmaceuticals and can be improved through the use of organic and hybrid modifiers of the working electrode surface

    Venous thromboembolism research priorities: A scientific statement from the American Heart Association and the International Society on Thrombosis and Haemostasis

    Full text link
    Venous thromboembolism (VTE) is a major cause of morbidity and mortality. The impact of the Surgeon General’s Call to Action in 2008 has been lower than expected given the public health impact of this disease. This scientific statement highlights future research priorities in VTE, developed by experts and a crowdsourcing survey across 16 scientific organizations. At the fundamental research level (T0), researchers need to identify pathobiologic causative mechanisms for the 50% of patients with unprovoked VTE and better understand mechanisms that differentiate hemostasis from thrombosis. At the human level (T1), new methods for diagnosing, treating, and preventing VTE will allow tailoring of diagnostic and therapeutic approaches to individuals. At the patient level (T2), research efforts are required to understand how foundational evidence impacts care of patients (eg, biomarkers). New treatments, such as catheter‐based therapies, require further testing to identify which patients are most likely to experience benefit. At the practice level (T3), translating evidence into practice remains challenging. Areas of overuse and underuse will require evidence‐based tools to improve care delivery. At the community and population level (T4), public awareness campaigns need thorough impact assessment. Large population‐based cohort studies can elucidate the biologic and environmental underpinings of VTE and its complications. To achieve these goals, funding agencies and training programs must support a new generation of scientists and clinicians who work in multidisciplinary teams to solve the pressing public health problem of VTE.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/156163/2/rth212373_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156163/1/rth212373.pd

    Telemetry-validated nitrogen stable isotope clocks identify ocean-to-estuarine habitat shifts in mobile organisms

    Get PDF
    Throughout their life history, many animals transition among heterogeneous environments to facilitate behaviours such as reproduction, foraging and predator avoidance. The dynamic environmental and biological conditions experienced by mobile species are integrated in the chemical composition of their tissues, providing retrospective insight into movement. Here, we present a unique application of nitrogen stable isotope clocks (‘isotopic clocks’), which integrate tissue turnover rates, consumer stable isotope ratios and habitat-specific isotope baselines to predict time-since-immigration and the timing of habitat shifts in a migratory species. Nitrogen stable isotope values of blood plasma collected from juvenile sand tiger sharks Carcharias taurus, a species known to undertake seasonal movements between ocean and estuarine environments, were used to derive estimates of time-since-immigration and the timing of seasonal habitat shifts undertaken by this species. Nitrogen isotopic clocks estimated for 65 juvenile sand tiger sharks sampled across 6 years indicated that individual sharks predominantly arrived to estuarine habitats between June and July, with some individuals arriving as early as mid-May. These estimates were validated by comparing isotope-derived estuarine arrival times with those from acoustically tracked individuals. The median estuarine arrival day estimates from our isotopic approach aligned with estimates from acoustic telemetry for each sampling population. Sensitivity analyses indicated that isotopically inferred time-since-immigration and estuarine arrival estimates were robust to variation in isotopic turnover rate and diet tissue discrimination factors under multiple modelling scenarios. This suggests that parameterization of the nitrogen isotopic clock provides reliable estimates of time-since-immigration and day of arrival into new habitats if isotopic variation exists between origin and new locations. Our study presents a unique application of telemetry-validated isotope clocks to derive retrospective estimates of time-since-immigration and timing of habitat shifts for animals that seasonally traverse heterogeneous environments. This approach can be readily applied across many temporal and spatial scales, and to other species and ecosystems, to facilitate rapid assessment of changes in animal habitat use and broader ecosystem structure

    Reversible Martensitic Phase Transition in Yttrium-Stabilized ZrO2 Nanopowders by Adsorption of Water

    Get PDF
    Funding: This work was supported by H2020/MSCA/RISE/SSHARE number 871284 project and the RO-JINR Grant No. 367/2021 item 27 and RO-JINR Projects № 366/2021 items 57, 61, 83, 85. Publisher Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland.The present study was aimed at revealing the influence of the mechanical stress induced by water molecule adsorption on the composition of crystalline phases in the ZrO2 + 3 mol% Y2O3-nanoparticles. Three basic methods were used to determine the phase transition: Neutron diffraction, Raman microspectroscopic scanning, and X-ray diffraction. The fact of reversible phase-structural β → α transformation and the simultaneous presence of two polymorphic structural modifications (β is the phase of the tetragonal syngony and α of monoclinic syngony in nanosized particles (9 nm)) under normal physical conditions was established by these methods. An assumption was made regarding the connection of the physical mechanism of transformation of the extremely nonequilibrium surface of nanoparticles with electronic exchange of the material of the near-surface layer of nanoparticles with the adsorption layer through donor-acceptor interaction. The principal possibility of creating direct-acting hydroelectric converters based on nanoscale YSZ (Yttria-Stabilized Zirconia) systems due to the reversible character of the considered effect was shown.publishersversionpublishe

    Spin-photon interface and spin-controlled photon switching in a nanobeam waveguide

    Get PDF
    Access to the electron spin is at the heart of many protocols for integrated and distributed quantum-information processing [1-4]. For instance, interfacing the spin-state of an electron and a photon can be utilized to perform quantum gates between photons [2,5] or to entangle remote spin states [6-9]. Ultimately, a quantum network of entangled spins constitutes a new paradigm in quantum optics [1]. Towards this goal, an integrated spin-photon interface would be a major leap forward. Here we demonstrate an efficient and optically programmable interface between the spin of an electron in a quantum dot and photons in a nanophotonic waveguide. The spin can be deterministically prepared with a fidelity of 96\%. Subsequently the system is used to implement a "single-spin photonic switch", where the spin state of the electron directs the flow of photons through the waveguide. The spin-photon interface may enable on-chip photon-photon gates [2], single-photon transistors [10], and efficient photonic cluster state generation [11]

    Curious connections: white matter pathways supporting individual differences in epistemic and perceptual curiosity

    Get PDF
    Across the lifespan, curiosity motivates us to learn, yet curiosity varies strikingly between individuals. Such individual differences have been shown for two distinct dimensions of curiosity: epistemic curiosity (EC), the desire to acquire knowledge about facts, and perceptual curiosity (PC), the desire for sensory information. It is not known, however, whether both dimensions of curiosity depend on different brain networks and whether inter-individual differences in curiosity depend on variation in anatomical connectivity within these networks. Here, we investigated the neuroanatomical connections underpinning individual variation in trait curiosity. Fifty-one female participants underwent a two-shell diffusion MRI sequence and completed questionnaires measuring EC and PC. Using deterministic spherical deconvolution tractography we extracted microstructural metrics (fractional anisotropy (FA) and mean diffusivity (MD)) from two key white matter tracts: the fornix (implicated in novelty processing, exploration, information seeking and episodic memory) and the inferior longitudinal fasciculus (ILF) (implicated in semantic learning and memory). In line with our predictions, we found that EC – but not PC – correlated with ILF microstructure. Fornix microstructure, in contrast, correlated with both EC and PC with posterior hippocampal fornix fibres - associated with posterior hippocampal network connectivity - linked to PC specifically. These findings suggest that differences in distinct dimensions of curiosity map systematically onto specific white matter tracts underlying well characterized brain networks. Furthermore, the results pave the way to study the anatomical substrates of inter-individual differences in dimensions of trait curiosity that motivate the learning of distinct forms of knowledge and skills

    Indistinguishable and efficient single photons from a quantum dot in a planar nanobeam waveguide

    Get PDF
    We demonstrate a high-purity source of indistinguishable single photons using a quantum dot embedded in a nanophotonic waveguide. The source features a near-unity internal coupling efficiency and the collected photons are efficiently coupled off chip by implementing a taper that adiabatically couples the photons to an optical fiber. By quasiresonant excitation of the quantum dot, we measure a single-photon purity larger than 99.4% and a photon indistinguishability of up to 94±1% by using p-shell excitation combined with spectral filtering to reduce photon jitter. A temperature-dependent study allows pinpointing the residual decoherence processes, notably the effect of phonon broadening. Strict resonant excitation is implemented as well as another means of suppressing photon jitter, and the additional complexity of suppressing the excitation laser source is addressed. The paper opens a clear pathway towards the long-standing goal of a fully deterministic source of indistinguishable photons, which is integrated on a planar photonic chip

    Coastal Dynamics of the Pechora and Kara Seas Under Changing Climatic Conditions and Human Disturbances

    Get PDF
    Coastal dynamics monitoring on the key areas of oil and gas development at the Barents and Kara Seas has been carried out by Laboratory of Geoecology of the North at the Faculty of Geography (Lomonosov Moscow State University) together with Zubov State Oceanographic Institute (Russian Federal Service for Hydrometeorology and Environmental Monitoring) for more than 30 years. During this period, an up-to-date monitoring technology, which includes direct field observations, remote sensing and numerical methods, has been developed. The results of such investigations are analyzed on the example of the Ural coast of Baydaratskaya Bay, Kara Sea. The dynamics of thermal-abrasion coasts are directly linked with climate and sea ice extent change. A description of how the wind-wave energy flux and the duration of the ice-free period affect the coastal line retreat is provided, along with a method of the wind-wave energy assessment and its results for the Kara Sea region. We have also evaluated the influence of local anthropogenic impacts on the dynamics of the Arctic coasts. As a result, methods of investigations necessary for obtaining the parameters required for the forecast of the retreat of thermoabrasional coasts have been developed

    The role of vascular cell adhesion molecule 1/ very late activation antigen 4 in endothelial progenitor cell recruitment to rheumatoid arthritis synovium

    Full text link
    Objective Marrow-derived endothelial progenitor cells (EPCs) are important in the neovascularization that occurs in diverse conditions such as cardiovascular disorders, inflammatory diseases, and neoplasms. In rheumatoid arthritis (RA), synovial neovascularization propels disease by nourishing the inflamed and hyperproliferative synovium. This study was undertaken to investigate the hypothesis that EPCs selectively home to inflamed joint tissue and may perpetuate synovial neovascularization. Methods In a collagen-induced arthritis (CIA) model, neovascularization and EPC accumulation in mouse ankle synovium was measured. In an antibody-induced arthritis model, EPC recruitment to inflamed synovium was evaluated. In a chimeric SCID mouse/human synovial tissue (ST) model, mice were engrafted subcutaneously with human ST, and EPC homing to grafts was assessed 2 days later. EPC adhesion to RA fibroblasts and RA ST was evaluated in vitro. Results In mice with CIA, cells bearing EPC markers were significantly increased in peripheral blood and accumulated in inflamed synovial pannus. EPCs were 4-fold more numerous in inflamed synovium from mice with anti–type II collagen antibody–induced arthritis versus controls. In SCID mice, EPC homing to RA ST was 3-fold greater than to normal synovium. Antibody neutralization of vascular cell adhesion molecule 1 (VCAM-1) and its ligand component Α4 integrin potently inhibited EPC adhesion to RA fibroblasts and RA ST cryosections. Conclusion These data demonstrate the selective recruitment of EPCs to inflamed joint tissue. The VCAM-1/very late activation antigen 4 adhesive system critically mediates EPC adhesion to cultured RA fibroblasts and to RA ST cryosections. These findings provide evidence of a possible role of EPCs in the synovial neovascularization that is critical to RA pathogenesis.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/56042/1/22706_ftp.pd
    corecore