18 research outputs found

    Modelling the interaction of steroid receptors with endocrine disrupting chemicals

    Get PDF
    BACKGROUND: The organic polychlorinated compounds like dichlorodiphenyltrichloroethane with its metabolites and polychlorinated biphenyls are a class of highly persistent environmental contaminants. They have been recognized to have detrimental health effects both on wildlife and humans acting as endocrine disrupters due to their ability of mimicking the action of the steroid hormones, and thus interfering with hormone response. There are several experimental evidences that they bind and activate human steroid receptors. However, despite the growing concern about the toxicological activity of endocrine disrupters, molecular data of the interaction of these compounds with biological targets are still lacking. RESULTS: We have used a flexible docking approach to characterize the molecular interaction of seven endocrine disrupting chemicals with estrogen, progesterone and androgen receptors in the ligand-binding domain. All ligands docked in the buried hydrophobic cavity corresponding to the hormone steroid pocket. The interaction was characterized by multiple hydrophobic contacts involving a different number of residues facing the binding pocket, depending on ligands orientation. The EDC ligands did not display a unique binding mode, probably due to their lipophilicity and flexibility, which conferred them a great adaptability into the hydrophobic and large binding pocket of steroid receptors. CONCLUSION: Our results are in agreement with toxicological data on binding and allow to describe a pattern of interactions for a group of ECD to steroid receptors suggesting the requirement of a hydrophobic cavity to accommodate these chlorine carrying compounds. Although the affinity is lower than for hormones, their action can be brought about by a possible synergistic effect

    In silico saturation mutagenesis and docking screening for the analysis of protein-ligand interaction: the Endothelial Protein C Receptor case study

    Get PDF
    BACKGROUND: The design of mutants in protein functional regions, such as the ligand binding sites, is a powerful approach to recognize the determinants of specific protein activities in cellular pathways. For an exhaustive analysis of selected positions of protein structure large scale mutagenesis techniques are often employed, with laborious and time consuming experimental set-up. 'In silico' mutagenesis and screening simulation represents a valid alternative to laboratory methods to drive the 'in vivo' testing toward more focused objectives. RESULTS: We present here a high performance computational procedure for large-scale mutant modelling and subsequent evaluation of the effect on ligand binding affinity. The mutagenesis was performed with a 'saturation' approach, where all 20 natural amino acids were tested in positions involved in ligand binding sites. Each modelled mutant was subjected to molecular docking simulation and stability evaluation. The simulated protein-ligand complexes were screened for their impairment of binding ability based on change of calculated Ki compared to the wild-type. An example of application to the Endothelial Protein C Receptor residues involved in lipid binding is reported. CONCLUSION: The computational pipeline presented in this work is a useful tool for the design of structurally stable mutants with altered affinity for ligand binding, considerably reducing the number of mutants to be experimentally tested. The saturation mutagenesis procedure does not require previous knowledge of functional role of the residues involved and allows extensive exploration of all possible substitutions and their pairwise combinations. Mutants are screened by docking simulation and stability evaluation followed by a rationally driven selection of those presenting the required characteristics. The method can be employed in molecular recognition studies and as a preliminary approach to select models for experimental testing

    ProCMD: a database and 3D web resource for protein C mutants

    Get PDF
    Background: Activated Protein C (ProC) is an anticoagulant plasma serine protease which also plays an important role in controlling inflammation and cell proliferation. Several mutations of the gene are associated with phenotypic functional deficiency of protein C, and with the risk of developing venous thrombosis. Structure prediction and computational analysis of the mutants have proven to be a valuable aid in understanding the molecular aspects of clinical thrombophilia. Results: We have built a specialized relational database and a search tool for natural mutants of protein C. It contains 195 entries that include 182 missense and 13 stop mutations. A menu driven search engine allows the user to retrieve stored information for each variant, that include genetic as well as structural data and a multiple alignment highlighting the substituted position. Molecular models of variants can be visualized with interactive tools; PDB coordinates of the models are also available for further analysis. Furthermore, an automatic modelling interface allows the user to generate multiple alignments and 3D models of new variants. Conclusion: ProCMD is an up-to-date interactive mutant database that integrates phenotypical descriptions with functional and structural data obtained by computational approaches. It will be useful in the research and clinical fields to help elucidate the chain of events leading from a molecular defect to the related disease. It is available for academics at the URL http://www.itb.cnr.it/procmd/

    An innovative strategy to investigate microbial protein modifications in a reliable fast and sensitive way: A therapy oriented proof of concept based on UV-C irradiation of SARS-CoV-2 spike protein

    Get PDF
    : The characterization of modifications of microbial proteins is of primary importance to dissect pathogen lifecycle mechanisms and could be useful in identifying therapeutic targets. Attempts to solve this issue yielded only partial and non-exhaustive results. We developed a multidisciplinary approach by coupling in vitro infection assay, mass spectrometry (MS), protein 3D modelling, and surface plasma resonance (SPR). As a proof of concept, the effect of low UV-C (273 nm) irradiation on SARS-CoV-2 spike (S) protein was investigated. Following UV-C exposure, MS analysis identified, among other modifications, the disruption of a disulphide bond within the conserved S2 subunit of S protein. Computational analyses revealed that this bond breakage associates with an allosteric effect resulting in the generation of a closed conformation with a reduced ability to bind the ACE2 receptor. The UV-C-induced reduced affinity of S protein for ACE2 was further confirmed by SPR analyses and in vitro infection assays. This comprehensive approach pinpoints the S2 domain of S protein as a potential therapeutic target to prevent SARS-CoV-2 infection. Notably, this workflow could be used to screen a wide variety of microbial protein domains, resulting in a precise molecular fingerprint and providing new insights to adequately address future epidemics

    Mellom politisk styring og styrt politikk - En diskursanalyse av køprising som klimapolitisk virkemiddel

    No full text
    Denne oppgaven er en diskursanalyse av køprising som klimapolitisk virkemiddel. På tross av at det i dag hersker bred enighet om nødvendigheten av å redusere utslipp av klimagasser, peker mye på et økende gap mellom målsetninger og resultater på området. Samtidig er transport – og særlig veitrafikk – en stor og økende kilde til disse utslippene. Køprising er et virkemiddel som i lengre tid har vært omtalt og anbefalt i fagmiljø tilknyttet transport, og som i perioden mellom 2008 og 2013 ble knyttet opp i mot nasjonale klimamål og statlige løfter om økonomiske midler og samarbeid. Blant byområdene som hadde køprising på agendaen var Trondheim, Kristiansand og Bergen. I empirien inngår tekster knyttet til Framtidens byer, Belønningsordningen og byenes bypakker. Jeg benytter meg av en sosialkonstruktivistisk tilnærming i oppgaven, der jeg anser at det er ulike måter å tolke både klimaproblemet og køprising som virkemiddel på, og at representasjoner av forholdet mellom dem ikke materialiserer seg av seg selv. I oppgaven analyserer jeg tekster knyttet til forvaltningen av en statlig bytransportpolitikk, og sporer forandring i måten forholdet mellom køprising og klima kommer til uttrykk på. Hensikten med oppgaven er å belyse vilkår for interaksjon mellom ulike politiske og administrative myndighetsnivå i skjæringspunktet mellom et klima–, by– og transportpolitisk domene

    Modelling the interaction of steroid receptors with endocrine disrupting chemicals-4

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Modelling the interaction of steroid receptors with endocrine disrupting chemicals"</p><p></p><p>BMC Bioinformatics 2005;6(Suppl 4):S10-S10.</p><p>Published online 1 Dec 2005</p><p>PMCID:PMC1866398.</p><p></p>oms in green. Aminoacids color code: orange: residues involved in ligand binding common to estradiol and PCB-OH; blue: PCB-OH specific interaction.Green dashed lines: hydrogen bond

    Genome Sequence of Rhodococcus opacus Strain R7, a Biodegrader of Mono- and Polycyclic Aromatic Hydrocarbons

    No full text
    Rhodococcus opacus strain R7 (CIP107348) degrades several mono- and polycyclic aromatic hydrocarbons. Here, we present the high-quality draft genome sequence of strain R7, consisting of 10,118,052 bp, with a G+C content of 67.0%, 9,602 protein-coding genes, and 62 RNAs genes

    Recent Strategic Advances in CFTR Drug Discovery: An Overview

    No full text
    Cystic fibrosis transmembrane conductance regulator (CFTR)-rescuing drugs have already transformed cystic fibrosis (CF) from a fatal disease to a treatable chronic condition. However, new-generation drugs able to bind CFTR with higher specificity/affinity and to exert stronger therapeutic benefits and fewer side effects are still awaited. Computational methods and biosensors have become indispensable tools in the process of drug discovery for many important human pathologies. Instead, they have been used only piecemeal in CF so far, calling for their appropriate integration with well-tried CF biochemical and cell-based models to speed up the discovery of new CFTR-rescuing drugs. This review will give an overview of the available structures and computational models of CFTR and of the biosensors, biochemical and cell-based assays already used in CF-oriented studies. It will also give the reader some insights about how to integrate these tools as to improve the efficiency of the drug discovery process targeted to CFTR

    HIV-1 Tat and Heparan Sulfate Proteoglycans Orchestrate the Setup of in Cis and in Trans Cell-Surface Interactions Functional to Lymphocyte Trans-Endothelial Migration

    Get PDF
    HIV-1 transactivating factor Tat is released by infected cells. Extracellular Tat homodimerizes and engages several receptors, including integrins, vascular endothelial growth factor receptor 2 (VEGFR2) and heparan sulfate proteoglycan (HSPG) syndecan-1 expressed on various cells. By means of experimental cell models recapitulating the processes of lymphocyte trans-endothelial migration, here, we demonstrate that upon association with syndecan-1 expressed on lymphocytes, Tat triggers simultaneously the in cis activation of lymphocytes themselves and the in trans activation of endothelial cells (ECs). This "two-way" activation eventually induces lymphocyte adhesion and spreading onto the substrate and vascular endothelial (VE)-cadherin reorganization at the EC junctions, with consequent endothelial permeabilization, leading to an increased extravasation of Tat-presenting lymphocytes. By means of a panel of biochemical activation assays and specific synthetic inhibitors, we demonstrate that during the above-mentioned processes, syndecan-1, integrins, FAK, src and ERK1/2 engagement and activation are needed in the lymphocytes, while VEGFR2, integrin, src and ERK1/2 are needed in the endothelium. In conclusion, the Tat/syndecan-1 complex plays a central role in orchestrating the setup of the various in cis and in trans multimeric complexes at the EC/lymphocyte interface. Thus, by means of computational molecular modelling, docking and dynamics, we also provide a characterization at an atomic level of the binding modes of the Tat/heparin interaction, with heparin herein used as a structural analogue of the heparan sulfate chains of syndecan-1

    Heparin and heparan sulfate proteoglycans promote HIV-1 p17 matrix protein oligomerization: computational, biochemical and biological implications

    Get PDF
    p17 matrix protein released by HIV+ cells interacts with leukocytes heparan sulfate proteoglycans (HSPGs), CXCR1 and CXCR2 exerting different cytokine-like activities that contribute to AIDS pathogenesis. Since the bioactive form of several cytokines is represented by dimers/oligomers and oligomerization is promoted by binding to heparin or HSPGs, here we evaluated if heparin/HSPGs also promote p17 oligomerization. Heparin favours p17 dimer, trimer and tetramer assembly, in a time- and biphasic dose-dependent way. Heparin-induced p17 oligomerization is of electrostatic nature, being it prevented by NaCl, by removing negative sulfated groups of heparin and by neutralizing positive lysine residues in the p17 N-terminus. A new computational protocol has been implemented to study heparin chains up to 24-mer accommodating a p17 dimer. Molecular dynamics show that, in the presence of heparin, two p17 molecules undergo conformational modifications creating a continuous "electropositive channel" in which heparin sulfated groups interact with p17 basic amino acids, promoting its dimerization. At the cell surface, HSPGs induce p17 oligomerization, as demonstrated by using B-lymphoblastoid Namalwa cells overexpressing the HSPG Syndecan-1. Also, HSPGs on the surface of BJAB and Raji human B-lymphoblastoid cells are required to p17 to induce ERK1/2 activation, suggesting that HS-induced oligomerization plays a role in p17-induced lymphoid dysregulation during AIDS
    corecore