110 research outputs found

    Variable perturbation size maximum power point tracking algorithms for photovoltaic systems

    Get PDF
    The perturbation and observation (P&O) or hill-climbing maximum power point tracking (MPPT) algorithms are commonly used in PV systems due to their easy implementation. A P&O algorithm based on peak current control (PCC) and on the use of instantaneous sampled values to calculate the next perturbation can provide faster transient responses and small oscillations around the maximum power point (MPP) than when pulse width modulation (PWM) and averaged control values are used. However, the use of a fixed size perturbation (variation of the reference current for the PCC) results in a compromise solution between transient and steady-state responses. This thesis focuses on alternatives for implementing variable size perturbations in peak current controlled P&O MPPTs. First a Fuzzy logic based implementation is proposed and designed. Then hybrid region-based methods, where the MPPT algorithms operate differently depending on where in the PV panel Volt-current characteristics the system operates, are considered. The concept of non-switching zones is proposed as a means for moving the operating point of the PV system towards the vicinity of the MPP in the shortest possible interval. The potential performance of four different P&O algorithms is investigated by means of simulations. Experimental results are then used to verify how the computational burden of each algorithm and the processing speed of a common digital signal processor (DSP) affect the performance of each method in a practical prototype

    In-situ neutron diffraction during stress relaxation of a single crystal nickel-base superalloy

    Get PDF
    The stress relaxation behaviour of a single crystal nickel-base superalloy has been quantified using time-of-flight neutron diffraction analysis for a range of temperatures relevant to casting. A new iterative analysis methodology is described to isolate the lattice strain behaviour of the γ matrix and γ' precipitate phases from data obtained sufficiently rapidly to help elucidate the microscopic effect of macroscopic stress relaxation. The independent response of γ and γ' is revealed, showing the temperature sensitivity of lattice strain relaxation. The γ/γ' response is discussed in the context of thermo-mechanical conditions that may affect the propensity for recrystallisation

    Super-orbital re-entry in Australia - laboratory measurement, simulation and flight observation

    Get PDF
    There are large uncertainties in the aerothermodynamic modelling of super-orbital re-entry which impact the design of spacecraft thermal protection systems (TPS). Aspects of the thermal environment of super-orbital re-entry flows can be simulated in the laboratory using arc- and plasma jet facilities and these devices are regularly used for TPS certification work [5]. Another laboratory device which is capable of simulating certain critical features of both the aero and thermal environment of super-orbital re-entry is the expansion tube, and three such facilities have been operating at the University of Queensland in recent years[10]. Despite some success, wind tunnel tests do not achieve full simulation, however, a virtually complete physical simulation of particular re-entry conditions can be obtained from dedicated flight testing, and the Apollo era FIRE II flight experiment [2] is the premier example which still forms an important benchmark for modern simulations. Dedicated super-orbital flight testing is generally considered too expensive today, and there is a reluctance to incorporate substantial instrumentation for aerothermal diagnostics into existing missions since it may compromise primary mission objectives. An alternative approach to on-board flight measurements, with demonstrated success particularly in the ‘Stardust’ sample return mission, is remote observation of spectral emissions from the capsule and shock layer [8]. JAXA’s ‘Hayabusa’ sample return capsule provides a recent super-orbital reentry example through which we illustrate contributions in three areas: (1) physical simulation of super-orbital re-entry conditions in the laboratory; (2) computational simulation of such flows; and (3) remote acquisition of optical emissions from a super-orbital re entry event

    History dependence of the microstructure on time-dependent deformation during <i>in-situ</i> cooling of a nickel-based single crystal superalloy

    Get PDF
    Time-dependent plastic deformation through stress relaxation and creep deformation during in-situ cooling of the as-cast single-crystal superalloy CMSX-4®has been studied via neutron diffraction, transmission electron microscopy, electro-thermal miniature testing, and analytical modeling across two temperature regimes. Between 1000 °C and 900 °C, stress relaxation prevails and gives rise to softening as evidenced by a decreased dislocation density and the presence of long segment stacking faults in γ phase. Lattice strains decrease in both the γ matrix and γ′ precipitate phases. A constitutive viscoplastic law derived from in-situ isothermal relaxation test under-estimates the equivalent plastic strain in the prediction of the stress and strain evolution during cooling in this case. It is thereby shown that the history dependence of the microstructure needs to be taken into account while deriving a constitutive law and which becomes even more relevant at high temperatures approaching the solvus. Higher temperature cooling experiments have also been carried out between 1300 °C and 1150 °C to measure the evolution of stress and plastic strain close to the γ′ solvus temperature. In-situ cooling of samples using ETMT shows that creep dominates during high-temperature deformation between 1300 °C and 1220 °C, but below a threshold temperature, typically 1220 °C work hardening begins to prevail from increasing γ′ fraction and resulting in a rapid increase in stress. The history dependence of prior accumulated deformation is also confirmed in the flow stress measurements using a single sample while cooling. The saturation stresses in the flow stress experiments show very good agreement with the stresses measured in the cooling experiments when viscoplastic deformation is dominant. This study demonstrates that experimentation during high-temperature deformation as well as the history dependence of the microstructure during cooling plays a key role in deriving an accurate viscoplastic constitutive law for the thermo-mechanical process during cooling from solidification

    Occupation and motor neuron disease: a New Zealand case-control study.

    Get PDF
    OBJECTIVES: To assess associations between occupation and motor neuron disease (MND). METHODS: We conducted a population-based case-control study with cases (n=321) recruited through the New Zealand Motor Neurone Disease Association and hospital discharge data. Controls (n=605) were recruited from the Electoral Roll. Information on personal and demographic details, lifestyle factors and a full occupational history was collected using questionnaires and interviews. Associations with ever/never employed and employment duration were estimated using logistic regression stratified by sex and adjusted for age, ethnicity, socioeconomic deprivation, education and smoking. RESULTS: Elevated risks were observed for field crop and vegetable growers (OR 2.93, 95% CI 1.10 to 7.77); fruit growers (OR 2.03, 95% CI 1.09 to 3.78); gardeners and nursery growers (OR 1.96, 95% CI 1.01 to 3.82); crop and livestock producers (OR 3.61, 95% CI 1.44 to 9.02); fishery workers, hunters and trappers (OR 5.62, 95% CI 1.27 to 24.97); builders (OR 2.90, 95% CI 1.41 to 5.96); electricians (OR 3.61, 95% CI 1.34 to 9.74); caregivers (OR 2.65, 95% CI 1.04 to 6.79); forecourt attendants (OR 8.31, 95% CI 1.79 to 38.54); plant and machine operators and assemblers (OR 1.42, 95% CI 1.01 to 2.01); telecommunications technicians (OR 4.2, 95% CI 1.20 to 14.64); and draughting technicians (OR 3.02, 95% CI 1.07 to 8.53). Industries with increased risks were agriculture (particularly horticulture and fruit growing), construction, non-residential care services, motor vehicle retailing, and sport and recreation. Positive associations between employment duration and MND were shown for the occupations fruit growers, gardeners and nursery growers, and crop and livestock producers, and for the horticulture and fruit growing industry. CONCLUSIONS: This study suggests associations between MND and occupations in agriculture and several other occupations

    A review of the ecological value of Cusuco National Park an urgent call forconservation action in a highly threatened Mesoamerican cloud forest

    Get PDF
    Cloud forests are amongst the most biologically unique, yet threatened, ecosystems in Mesoamerica. We summarize the ecological value and conservation status of a well-studied cloud forest site: Cusuco National Park (CNP), a 23,440 ha protected area in the Merendón mountains, northwest Honduras. We show CNP to have exceptional biodiversity; of 966 taxa identified to a species-level to date, 362 (37.5%) are Mesoamerican endemics, 67 are red-listed by the IUCN, and at least 49 are micro-endemics known only from the Merendón range. CNP also provides key ecosystem services including provision of drinking water and downstream flood mitigation, as well as carbon sequestration, with an estimated stock of 3.5 million megagrams of carbon in 2000. Despite its ecological importance, CNP faces multiple environmental threats and associated stresses, including deforestation (1,759 ha since 2000 equating to 7% of total forest area), poaching (7% loss of mammal relative abundance per year), amphibian declines due to chytridiomycosis (70% of species threatened or near-threatened), and climate change (a mean 2.6 °C increase in temperature and 112 mm decrease in rainfall by 2100). Despite conservation actions, including community ranger patrols, captive-breeding programmes, and ecotourism initiatives, environmental degradation of CNP continues. Further action is urgently required, including reinforcement and expansion of ranger programmes, greater stakeholder engagement, community education programmes, development of alternative livelihood projects, and legislative enforcement and prosecution. Without a thorough and rapid response to understand and mitigate illegal activities, the extirpation and extinction of species and the loss of vital ecosystem services are inevitable in the coming decades
    corecore