4 research outputs found

    Genetics as a novel tool in mining impact assessment and biomonitoring of critically endangered western chimpanzees in the Nimba Mountains, Guinea

    Get PDF
    Western chimpanzees (Pan troglodytes verus) are Critically Endangered and Guinea is a key stronghold for this subspecies. However, Guinea is also rich in minerals with some of the highest‐grade iron‐ore deposits in the world. Specifically, the Nimba Mountains, home to western chimpanzees, is one of the sites under consideration for mining activities. To assess the impact of mining activities in the area, we used non‐invasive genetic sampling to estimate chimpanzee population size, sex ratio, community composition, and range boundaries on the western flank of the massif. The level of genetic diversity and affinity between communities was estimated and recommendations for future genetic censusing provided. Between 2003 and 2018, we collected 999 fecal samples of which 663 were analyzed using a panel of 26 microsatellites. We identified a minimum of 136 chimpanzees in four communities, with evidence of migratory events, a high level of shared ancestry and genetic diversity. We assessed sampling intensities and capture rates for each community. Saturation was reached in two communities with sampling between 3.2 and 4.3 times the estimated number of chimpanzees. Our findings highlight the utility of genetic censusing for temporal monitoring of ape abundance, as well as capturing migratory events and gauging genetic diversity and population viability over time. We recommend genetic sampling, combined with camera trapping, for use in future Environmental and Social Impact Assessments, as these methods can yield robust baselines for implementing the mitigation hierarchy, future biomonitoring and conservation management

    Chimpanzee accumulative stone throwing

    Get PDF
    The study of the archaeological remains of fossil hominins must rely on reconstructions to elucidate the behaviour that may have resulted in particular stone tools and their accumulation. Comparatively, stone tool use among living primates has illuminated behaviours that are also amenable to archaeological examination, permitting direct observations of the behaviour leading to artefacts and their assemblages to be incorporated. Here, we describe newly discovered stone tool-use behaviour and stone accumulation sites in wild chimpanzees reminiscent of human cairns. In addition to data from 17 mid- to long-term chimpanzee research sites, we sampled a further 34 Pan troglodytes communities. We found four populations in West Africa where chimpanzees habitually bang and throw rocks against trees, or toss them into tree cavities, resulting in conspicuous stone accumulations at these sites. This represents the first record of repeated observations of individual chimpanzees exhibiting stone tool use for a purpose other than extractive foraging at what appear to be targeted trees. The ritualized behavioural display and collection of artefacts at particular locations observed in chimpanzee accumulative stone throwing may have implications for the inferences that can be drawn from archaeological stone assemblages and the origins of ritual sites

    Genetics as a novel tool in mining impact assessment and biomonitoring of critically endangered western chimpanzees in the Nimba Mountains, Guinea

    Get PDF
    Funder: Alfred Benzon Foundation; Id: http://dx.doi.org/10.13039/501100007469Funder: Gates Cambridge Trust; Id: http://dx.doi.org/10.13039/501100005370Funder: Graduate Teaching PhD Scholarship, University of KentFunder: Homerton College, University of Cambridge; Id: http://dx.doi.org/10.13039/501100008420Funder: Mohamed bin Zayed Species Conservation Fund; Id: http://dx.doi.org/10.13039/501100011672Funder: Newnham College, University of Cambridge; Id: http://dx.doi.org/10.13039/501100000663Funder: SociĂ©tĂ© des Mines de Fer de GuineĂ© S.A. (Conakry, Guinea)Funder: Stichting Lucie Burgers, The Netherlands; Id: http://dx.doi.org/10.13039/501100013496Western chimpanzees (Pan troglodytes verus) are Critically Endangered and Guinea is a key stronghold for this subspecies. However, Guinea is also rich in minerals with some of the highest‐grade iron‐ore deposits in the world. Specifically, the Nimba Mountains, home to western chimpanzees, is one of the sites under consideration for mining activities. To assess the impact of mining activities in the area, we used non‐invasive genetic sampling to estimate chimpanzee population size, sex ratio, community composition, and range boundaries on the western flank of the massif. The level of genetic diversity and affinity between communities was estimated and recommendations for future genetic censusing provided. Between 2003 and 2018, we collected 999 fecal samples of which 663 were analyzed using a panel of 26 microsatellites. We identified a minimum of 136 chimpanzees in four communities, with evidence of migratory events, a high level of shared ancestry and genetic diversity. We assessed sampling intensities and capture rates for each community. Saturation was reached in two communities with sampling between 3.2 and 4.3 times the estimated number of chimpanzees. Our findings highlight the utility of genetic censusing for temporal monitoring of ape abundance, as well as capturing migratory events and gauging genetic diversity and population viability over time. We recommend genetic sampling, combined with camera trapping, for use in future Environmental and Social Impact Assessments, as these methods can yield robust baselines for implementing the mitigation hierarchy, future biomonitoring and conservation management

    Chimpanzee accumulative stone throwing

    Get PDF
    The study of the archaeological remains of fossil hominins must rely on reconstructions to elucidate the behaviour that may have resulted in particular stone tools and their accumulation. Comparatively, stone tool use among living primates has illuminated behaviours that are also amenable to archaeological examination, permitting direct observations of the behaviour leading to artefacts and their assemblages to be incorporated. Here, we describe newly discovered stone tool-use behaviour and stone accumulation sites in wild chimpanzees reminiscent of human cairns. In addition to data from 17 mid- to long-term chimpanzee research sites, we sampled a further 34 Pan troglodytes communities. We found four populations in West Africa where chimpanzees habitually bang and throw rocks against trees, or toss them into tree cavities, resulting in conspicuous stone accumulations at these sites. This represents the first record of repeated observations of individual chimpanzees exhibiting stone tool use for a purpose other than extractive foraging at what appear to be targeted trees. The ritualized behavioural display and collection of artefacts at particular locations observed in chimpanzee accumulative stone throwing may have implications for the inferences that can be drawn from archaeological stone assemblages and the origins of ritual sites.This is an article from Scientific Reports 6 (2016): 22219, doi:10.1038/srep22219. Posted with permission.</p
    corecore