3,424 research outputs found
A population study of type II bursts in the Rapid Burster
Type II bursts are thought to arise from instabilities in the accretion flow
onto a neutron star in an X-ray binary. Despite having been known for almost 40
years, no model can yet satisfactorily account for all their properties. To
shed light on the nature of this phenomenon and provide a reference for future
theoretical work, we study the entire sample of Rossi X-ray Timing Explorer
data of type II bursts from the Rapid Burster (MXB 1730-335). We find that type
II bursts are Eddington-limited in flux, that a larger amount of energy goes in
the bursts than in the persistent emission, that type II bursts can be as short
as 0.130 s, and that the distribution of recurrence times drops abruptly below
15-18 s. We highlight the complicated feedback between type II bursts and the
NS surface thermonuclear explosions known as type I bursts, and between type II
bursts and the persistent emission. We review a number of models for type II
bursts. While no model can reproduce all the observed burst properties and
explain the source uniqueness, models involving a gating role for the magnetic
field come closest to matching the properties of our sample. The uniqueness of
the source may be explained by a special combination of magnetic field
strength, stellar spin period and alignment between the magnetic field and the
spin axis.Comment: Accepted 2015 February 12. Received 2015 February 10; in original
form 2014 December 1
Nested-grid calculations of disk-planet interaction
We study the evolution of embedded protoplanets in a protostellar disk using very high resolution nested-grid computations. This method allows us to perform global simulations of planets orbiting in disks and, at the same time, to resolve in detail the dynamics of the flow inside the Roche lobe of the planet. The primary interest of this work lies in the analysis of the gravitational torque balance acting on the planet. For this purpose we study planets of different masses, ranging from one Earth-mass up to one Jupiter-mass, assuming typical parameters of the protostellar disk. The high resolution of the method allows a precise determination of the mass flow onto the planet and the resulting torques. The obtained migration time scales are in the range from few times 10^4 years, for intermediate mass planets, to 10^6 years, for very low and high mass planets. Typical growth time scales depend strongly on the planetary mass, ranging from a few hundred years, in the case of Earth-type planets, to several ten thousand years, in the case of Jupiter-type planets
Current status of laboratory and imaging diagnosis of neonatal necrotizing enterocolitis
Necrotizing enterocolitis continues to be a devastating disease process for very low birth weight infants in Neonatal Intensive Care Units. The aetiology and pathogenesis of necrotizing enterocolitis are not definitively understood. It is known that necrotizing enterocolitis is secondary to a complex interaction of multiple factors that results in mucosal damage, which leads to intestinal ischemia and necrosis. Advances in neonatal care, including resuscitation and ventilation support technology, have seen increased survival rates among premature neonates and a concomitant detection in the incidence of this intestinal disease.Diagnosis can be difficult, and identifying infants at the onset of disease remains a challenge. Early diagnosis, which relies on imaging findings, and initiation of prompt therapy are essential to limit morbidity and mortality. Moreover, early management is critical and life-saving.This review summarizes what is known on the laboratory and instrumental diagnostic strategies needed to improve neonatal outcomes and, possibily, to prevent the onset of an overt necrotizing enterocolitis
Chiral spin texture in the charge-density-wave phase of the correlated metallic Pb/Si(111) monolayer
We investigate the 1/3 monolayer -Pb/Si(111) surface by scanning
tunneling spectroscopy (STS) and fully relativistic first-principles
calculations. We study both the high-temperature and
low-temperature reconstructions and show that, in both phases, the
spin-orbit interaction leads to an energy splitting as large as of the
valence-band bandwidth. Relativistic effects, electronic correlations and
Pb-substrate interaction cooperate to stabilize a correlated low-temperature
paramagnetic phase with well-developed lower and upper Hubbard bands coexisting
with periodicity. By comparing the Fourier transform of STS
conductance maps at the Fermi level with calculated quasiparticle interference
from non-magnetic impurities, we demonstrate the occurrence of two large
hexagonal Fermi sheets with in-plane spin polarizations and opposite
helicities.Comment: 5 pages, 3 figure
Nonlinear Interaction of Transversal Modes in a CO2 Laser
We show the possibility of achieving experimentally a Takens-Bogdanov
bifurcation for the nonlinear interaction of two transverse modes ()
in a laser. The system has a basic O(2) symmetry which is perturbed by
some symmetry-breaking effects that still preserve the symmetry. The
pattern dynamics near this codimension two bifurcation under such symmetries is
described. This dynamics changes drastically when the laser properties are
modified.Comment: 16 pages, 0 figure
Two-photon diffraction and quantum lithography
We report a proof-of-principle experimental demonstration of quantum
lithography. Utilizing the entangled nature of a two-photon state, the
experimental results have bettered the classical diffraction limit by a factor
of two. This is a quantum mechanical two-photon phenomenon but not a violation
of the uncertainty principle.Comment: 5 pages, 5 figures Submitted to Physical Review Letter
Wetting and contact-line effects for spherical and cylindrical droplets on graphene layers: A comparative molecular-dynamics investigation
In Molecular Dynamics (MD) simulations, interactions between water molecules
and graphitic surfaces are often modeled as a simple Lennard-Jones potential
between oxygen and carbon atoms. A possible method for tuning this parameter
consists of simulating a water nanodroplet on a flat graphitic surface,
measuring the equilibrium contact angle, extrapolating it to the limit of a
macroscopic droplet and finally matching this quantity to experimental results.
Considering recent evidence demonstrating that the contact angle of water on a
graphitic plane is much higher than what was previously reported, we estimate
the oxygen-carbon interaction for the recent SPC/Fwwater model. Results
indicate a value of about 0.2 kJ/mol, much lower than previous estimations. We
then perform simulations of cylindrical water filaments on graphitic surfaces,
in order to compare and correlate contact angles resulting from these two
different systems. Results suggest that modified Young's equation does not
describe the relation between contact angle and drop size in the case of
extremely small systems and that contributions different from the one deriving
from contact line tension should be taken into account.Comment: To be published on Physical Review E (http://pre.aps.org/
Microenvironment in neuroblastoma: Isolation and characterization of tumor-derived mesenchymal stromal cells
Background: It has been proposed that mesenchymal stromal cells (MSCs) promote tumor progression by interacting with tumor cells and other stroma cells in the complex network of the tumor microenvironment. We characterized MSCs isolated and expanded from tumor tissues of pediatric patients diagnosed with neuroblastomas (NB-MSCs) to define interactions with the tumor microenvironment. Methods: Specimens were obtained from 7 pediatric patients diagnosed with neuroblastoma (NB). Morphology, immunophenotype, differentiation capacity, proliferative growth, expression of stemness and neural differentiation markers were evaluated. Moreover, the ability of cells to modulate the immune response, i.e. inhibition of phytohemagglutinin (PHA) activated peripheral blood mononuclear cells (PBMCs) and natural killer (NK) cytotoxic function, was examined. Gene expression profiles, known to be related to tumor cell stemness, Wnt pathway activation, epithelial-mesenchymal transition (EMT) and tumor metastasis were also evaluated. Healthy donor bone marrow-derived MSCs (BM-MSC) were employed as controls. Results: NB-MSCs presented the typical MSC morphology and phenotype. They showed a proliferative capacity superimposable to BM-MSCs. Stemness marker expression (Sox2, Nanog, Oct3/4) was comparable to BM-MSCs. NB-MSC in vitro osteogenic and chondrogenic differentiation was similar to BM-MSCs, but NB-MSCs lacked adipogenic differentiation capacity. NB-MSCs reached senescence phases at a median passage of P7 (range, P5-P13). NB-MSCs exhibited greater immunosuppressive capacity on activated T lymphocytes at a 1:2 (MSC: PBMC) ratio compared with BM-MSCs (p = 0.018). NK cytotoxic activity was not influenced by co-culture, either with BM-MSCs or NB-MSCs. Flow-cytometry cell cycle analysis showed that NB-MSCs had an increased number of cells in the G0-G1 phase compared to BM-MSCs. Transcriptomic profiling results indicated that NB-MSCs were enriched with EMT genes compared to BM-MSCs. Conclusions: We characterized the biological features, the immunomodulatory capacity and the gene expression profile of NB-MSCs. The NB-MSC gene expression profile and their functional properties suggest a potential role in promoting tumor escape, invasiveness and metastatic traits of NB cancer cells. A better understanding of the complex mechanisms underlying the interactions between NB cells and NB-derived MSCs should shed new light on potential novel therapeutic approaches
HST/NICMOS observations of a proto-brown dwarf candidate
We present deep HST/NICMOS observations peering through the outflow cavity of
the protostellar candidate IRAS 04381+2540 in the Taurus Molecular Cloud-1. A
young stellar object as central source, a jet and a very faint and close (0.6")
companion are identified. The primary and the companion have similar colours,
consistent with strong reddening. We argue that the companion is neither a
shock-excited knot nor a background star. The colour/magnitude information
predicts a substellar upper mass limit for the companion, but the final
confirmation will require spectroscopic information. Because of its geometry,
young age and its rare low-mass companion, this system is likely to provide a
unique insight into the formation of brown dwarfs.Comment: Astronomy & Astrophysics Letters, in press; 4 pages, 2 figure
Origin of the Different Architectures of the Jovian and Saturnian Satellite Systems
The Jovian regular satellite system mainly consists of four Galilean
satellites that have similar masses and are trapped in mutual mean motion
resonances except for the outer satellite, Callisto. On the other hand, the
Saturnian regular satellite system has only one big icy body, Titan, and a
population of much smaller icy moons. We have investigated the origin of these
major differences between the Jovian and Saturnian satellite systems by
semi-analytically simulating the growth and orbital migration of
proto-satellites in an accreting proto-satellite disk. We set up two different
disk evolution/structure models that correspond to Jovian and Saturnian
systems, by building upon previously developed models of an actively-supplied
proto-satellite disk, the formation of gas giants, and observations of young
stars. Our simulations extend previous models by including the (1) different
termination timescales of gas infall onto the proto-satellite disk and (2)
different evolution of a cavity in the disk, between the Jovian and Saturnian
systems. We have performed Monte Carlo simulations and show that in the case of
the Jovian systems, four to five similar-mass satellites are likely to remain
trapped in mean motion resonances. This orbital configuration is formed by type
I migration, temporal stopping of the migration near the disk inner edge, and
quick truncation of gas infall caused by Jupiter opening a gap in the Solar
nebula. The Saturnian systems tend to end up with one dominant body in the
outer regions caused by the slower decay of gas infall associated with global
depletion of the Solar nebula. The total mass and compositional zoning of the
predicted Jovian and Saturnian satellite systems are consistent with the
observed satellite systems.Comment: Accepted to ApJ, 33pages, 6figures, 2table
- …
