4,590 research outputs found

    Accretion Discs Trapped Near Corotation

    Full text link
    We show that discs accreting onto the magnetosphere of a rotating star can end up in a 'trapped' state, in which the inner edge of the disc stays near the corotation radius, even at low and varying accretion rates. The accretion in these trapped states can be steady or cyclic; we explore these states over wide range of parameter space. We find two distinct regions of instability, one related to the buildup and release of mass in the disk outside corotation, the other to mass storage within the transition region near corotation. With a set of calculations over long time scales we show how trapped states evolve from both nonaccreting and fully accreting initial conditions, and also calculate the effects of cyclic accretion on the spin evolution of the star. Observations of cycles such as found here would provide important clues on the physics of magnetospheric accretion. Recent observations of cyclic and other unusual variability in T Tauri stars (EXors) and X-ray binaries are discussed in this context.Comment: 14 pages, 10 figures, accepted to MNRA

    Episodic Accretion on to Strongly Magnetic Stars

    Full text link
    Some accreting neutron stars and young stars show unexplained episodic flares in the form of quasi-periodic oscillations or recurrent outbursts. In a series of two papers we present new work on an instability that can lead to episodic outbursts when the accretion disc is truncated by the star's strong magnetic field close to the corotation radius (where the Keplerian frequency matches the star's rotational frequency). In this paper we outline the physics of the instability and use a simple parameterization of the disc-field interaction to explore the instability numerically, which we show can lead to repeated bursts of accretion as well as steady-state solutions, as first suggested by Sunyaev and Shakura. The cycle time of these bursts increases with decreasing accretion rate. These solutions show that the usually assumed `propeller' state, in which mass is ejected from the system, does not need to occur even at very low accretion rates.Comment: 13 pages, 8 figures, accepted to MNRAS, minor corrections following referee repor

    Screening by coral green fluorescent protein (GFP)-like chromoproteins supports a role in photoprotection of zooxanthellae

    No full text
    Green fluorescent protein (GFP)-like pigments are responsible for the vivid colouration of many reef-building corals and have been proposed to act as photoprotectants. Their role remains controversial because the functional mechanism has not been elucidated. We provide direct evidence to support a photoprotective role of the non-fluorescent chromoproteins (CPs) that form a biochemically and photophysically distinct group of GFP-like proteins. Based on observations of Acropora nobilis from the Great Barrier Reef, we explored the photoprotective role of CPs by analysing five coral species under controlled conditions. In vitro and in hospite analyses of chlorophyll excitation demonstrate that screening by CPs leads to a reduction in chlorophyll excitation corresponding to the spectral properties of the specific CPs present in the coral tissues. Between 562 and 586 nm, the CPs maximal absorption range, there was an up to 50 % reduction of chlorophyll excitation. The screening was consistent for established and regenerating tissue and amongst symbiont clades A, C and D. Moreover, among two differently pigmented morphs of Acropora valida grown under identical light conditions and hosting subclade type C3 symbionts, high CP expression correlated with reduced photodamage under acute light stress

    Closed-loop approach to thermodynamics

    Full text link
    We present the closed loop approach to linear nonequilibrium thermodynamics considering a generic heat engine dissipatively connected to two temperature baths. The system is usually quite generally characterized by two parameters: the output power PP and the conversion efficiency η\eta, to which we add a third one, the working frequency ω\omega. We establish that a detailed understanding of the effects of the dissipative coupling on the energy conversion process, necessitates the knowledge of only two quantities: the system's feedback factor β\beta and its open-loop gain A0A_{0}, the product of which, A0βA_{0}\beta, characterizes the interplay between the efficiency, the output power and the operating rate of the system. By placing thermodynamics analysis on a higher level of abstraction, the feedback loop approach provides a versatile and economical, hence a very efficient, tool for the study of \emph{any} conversion engine operation for which a feedback factor may be defined

    1 Hz Flaring in the Accreting Millisecond Pulsar NGC 6440 X-2: Disk Trapping and Accretion Cycles

    Get PDF
    The dynamics of the plasma in the inner regions of an accretion disk around accreting millisecond X-ray pulsars is controlled by the magnetic field of the neutron star. The interaction between an accretion disk and a strong magnetic field is not well-understood, particularly at low accretion rates (the so-called ``propeller regime'). This is due in part to the lack of clear observational diagnostics to constrain the physics of the disk-field interaction. Here we associate the strong ~1 Hz modulation seen in the accreting millisecond X-ray pulsar NGC 6440 X-2 with an instability that arises when the inner edge of the accretion disk is close to the corotation radius (where the stellar rotation rate matches the Keplerian speed in the disk). A similar modulation has previously been observed in another accreting millisecond X-ray pulsar (SAX J1808.4-3658) and we suggest that the two phenomena are related and that this may be a common phenomenon among other magnetized systems. Detailed comparisons with theoretical models suggest that when the instability is observed, the interaction region between the disk and the field is very narrow -- of the order of 1 km. Modelling further suggests that there is a transition region (~1-10 km) around the corotation radius where the disk-field torque changes sign from spin up to spin down. This is the first time that a direct observational constraint has been placed on the width of the disk-magnetosphere interaction region, in the frame of the trapped-disk instability model.Comment: Accepted by ApJ, minor revisio

    Photo-ionization of planetary winds: case study HD209458b

    Get PDF
    Close-in hot Jupiters are exposed to a tremendous photon flux that ionizes the neutral escaping material from the planet leaving an observable imprint that makes them an interesting laboratory for testing theoretical models. In this work we present 3D hydrodynamic simulations with radiation transfer calculations of a close-in exoplanet in a blow-off state. We calculate the Ly-α\alpha absorption and compare it with observations of HD 209458b an previous simplified model results.Our results show that the hydrodynamic interaction together with a proper calculation of the photoionization proccess are able to reproduce the main features of the observed Ly-α\alpha absorption, in particular at the blue-shifted wings of the line. We found that the ionizing stellar flux produce an almost linear effect on the amount of absorption in the wake. Varying the planetary mass loss rate and the radiation flux, we were able to reproduce the 10%10\% absorption observed at −100 km s−1-100~\mathrm{km~s^{-1}}.Comment: 9 pages, 6 figure

    A population study of type II bursts in the Rapid Burster

    Get PDF
    Type II bursts are thought to arise from instabilities in the accretion flow onto a neutron star in an X-ray binary. Despite having been known for almost 40 years, no model can yet satisfactorily account for all their properties. To shed light on the nature of this phenomenon and provide a reference for future theoretical work, we study the entire sample of Rossi X-ray Timing Explorer data of type II bursts from the Rapid Burster (MXB 1730-335). We find that type II bursts are Eddington-limited in flux, that a larger amount of energy goes in the bursts than in the persistent emission, that type II bursts can be as short as 0.130 s, and that the distribution of recurrence times drops abruptly below 15-18 s. We highlight the complicated feedback between type II bursts and the NS surface thermonuclear explosions known as type I bursts, and between type II bursts and the persistent emission. We review a number of models for type II bursts. While no model can reproduce all the observed burst properties and explain the source uniqueness, models involving a gating role for the magnetic field come closest to matching the properties of our sample. The uniqueness of the source may be explained by a special combination of magnetic field strength, stellar spin period and alignment between the magnetic field and the spin axis.Comment: Accepted 2015 February 12. Received 2015 February 10; in original form 2014 December 1
    • …
    corecore