75 research outputs found

    RADIAL EVOLUTION OF SOLAR WIND TURBULENCE DURING EARTH AND ULYSSES ALIGNMENT OF 2007 AUGUST

    Get PDF
    At the end of 2007 August, during the minimum of solar cycle 23, a lineup of Earth and Ulysses occurred, giving the opportunity to analyze, for the first time, the same plasma sample at different observation points, namely at 1 and 1.4 AU. In particular, it allowed us to study the radial evolution of solar wind turbulence typical of fast wind streams as proposed in a Coordinated Investigation Programme for the International Heliophysical Year. This paper describes both the macrostructure and the fluctuations at small scales of this event. We find that soon after detecting the same fast stream, the Advanced Composition Explorer (ACE) observed a change of magnetic polarity being the interplanetary current sheet located between the orbits of the two spacecraft. Moreover, we observe that the compression region formed in front of the fast stream detected at ACE's location evolves in a fast forward shock at Ulysses' orbit. On the other hand, small-scale analysis shows that turbulence is evolving. The presence of a shift of the frequency break separating the injection range from the inertial range toward lower frequencies while distance increases is a clear indication that nonlinear interactions are at work. Moreover, we observe that intermittency, as measured by the flatness factor, increases with distance. This study confirms previous analyses performed using Helios observations of the same fast wind streams at different heliocentric distances, allowing us to relax about the hypothesis of the stationarity of the source regions adopted in previous studies. Consequently, any difference noticed in the solar wind parameters would be ascribed to radial (time) evolution

    The BL Lac objects OQ 530 and S5 0716+714. Simultaneous observations in the X-rays, radio, optical and TeV bands

    Get PDF
    We present the results of the BeppoSAX observations of two BL Lacs, OQ 530 and S5 0716+714, as part of a ToO program for the simultaneous observation at radio, optical, X-ray and TeV energies. Both sources are detected in the LECS and MECS, with S5 0716+714 visible also in the PDS band, up to about 60 keV. The X-ray spectra of both sources are better fitted by a double power-law model, with a steep soft X-ray component flattening at harder energies, with breaks at 0.3 and 1.5 keV, respectively. The concave shape of the spectra in both objects is consistent with soft X-rays being produced by the synchrotron and harder X-rays by the inverse Compton processes. Also the X-ray variability properties confirm this scenario, in particular for S5 0716+714 our observation shows variations by about a factor 3 over one hour below 3 keV and no variability above. Their simultaneous broad band energy spectral distributions can be successfully interpreted within the frame of a homogeneous synchrotron and inverse Compton model, including a possible contribution from an external source of seed photons with the different spectral states of S5 0716+714 being reproduced by changing the injected power. The resulting parameters are fully consistent with the two sources being intermediate objects within the "sequence" scenario proposed for blazars.Comment: 10 pages, 8 figures, accepted by A&

    Geoeffectiveness and efficiency of CIR, Sheath and ICME in generation of magnetic storms

    Full text link
    We investigate relative role of various types of solar wind streams in generation of magnetic storms. On the basis of the OMNI data of interplanetary measurements for the period of 1976-2000 we analyze 798 geomagnetic storms with Dst < -50 nT and their interplanetary sources: corotating interaction regions (CIR), interplanetary CME (ICME) including magnetic clouds (MC) and Ejecta and compression regions Sheath before both types of ICME. For various types of solar wind we study following relative characteristics: occurrence rate; mass, momentum, energy and magnetic fluxes; probability of generation of magnetic storm (geoeffectiveness) and efficiency of process of this generation. Obtained results show that despite magnetic clouds have lower occurrence rate and lower efficiency than CIR and Sheath they play an essential role in generation of magnetic storms due to higher geoeffectiveness of storm generation (i.e higher probability to contain large and long-term southward IMF Bz component).Comment: 23 pages, 4 figures, 3 tables, submitted to JGR special issue "Response of Geospace to High-Speed Streams

    First light observations of the solar wind in the outer corona with the Metis coronagraph

    Get PDF
    In this work, we present an investigation of the wind in the solar corona that has been initiated by observations of the resonantly scattered ultraviolet emission of the coronal plasma obtained with UVCS-SOHO, designed to measure the wind outflow speed by applying Doppler dimming diagnostics. Metis on Solar Orbiter complements the UVCS spectroscopic observations that were performed during solar activity cycle 23 by simultaneously imaging the polarized visible light and the H?» I Lyman-α corona in order to obtain high spatial and temporal resolution maps of the outward velocity of the continuously expanding solar atmosphere. The Metis observations, taken on May 15, 2020, provide the first HI Lyman-α images of the extended corona and the first instantaneous map of the speed of the coronal plasma outflows during the minimum of solar activity and allow us to identify the layer where the slow wind flow is observed. The polarized visible light (580-640 nm) and the ultraviolet HI Lyα (121.6 nm) coronal emissions, obtained with the two Metis channels, were combined in order to measure the dimming of the UV emission relative to a static corona. This effect is caused by the outward motion of the coronal plasma along the direction of incidence of the chromospheric photons on the coronal neutral hydrogen. The plasma outflow velocity was then derived as a function of the measured Doppler dimming. The static corona UV emission was simulated on the basis of the plasma electron density inferred from the polarized visible light. This study leads to the identification, in the velocity maps of the solar corona, of the high-density layer about ±10° wide, centered on the extension of a quiet equatorial streamer present at the east limb - the coronal origin of the heliospheric current sheet - where the slowest wind flows at about 160 ± 18 km s-1 from 4 R⊙ to 6 R⊙. Beyond the boundaries of the high-density layer, the wind velocity rapidly increases, marking the transition between slow and fast wind in the corona

    Magnetic reconnection as a mechanism to produce multiple protonpopulations and beams locally in the solar wind

    Get PDF
    Context. Spacecraft observations early revealed frequent multiple proton populations in the solar wind. Decades of research on their origin have focused on processes such as magnetic reconnection in the low corona and wave-particle interactions in the corona and locally in the solar wind.Aims.This study aims to highlight that multiple proton populations and beams are also produced by magnetic reconnection occurring locally in the solar wind. Methods. We use high resolution Solar Orbiter proton velocity distribution function measurements, complemented by electron and magnetic field data, to analyze the association of multiple proton populations and beams with magnetic reconnection during a period of slow Alfv\'enic solar wind on 16 July 2020. Results. At least 6 reconnecting current sheets with associated multiple proton populations and beams, including a case of magnetic reconnection at a switchback boundary, are found during this day. This represents 2% of the measured distribution functions. We discuss how this proportion may be underestimated, and how it may depend on solar wind type and distance from the Sun. Conclusions. Although suggesting a likely small contribution, but which remains to be quantitatively assessed, Solar Orbiter observations show that magnetic reconnection must be considered as one of the mechanisms that produce multiple proton populations and beams locally in the solar wind

    Parker solar probe: four years of discoveries at solar cycle minimum

    Get PDF
    Launched on 12 Aug. 2018, NASA’s Parker Solar Probe had completed 13 of its scheduled 24 orbits around the Sun by Nov. 2022. The mission’s primary science goal is to determine the structure and dynamics of the Sun’s coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what processes accelerate energetic particles. Parker Solar Probe returned a treasure trove of science data that far exceeded quality, significance, and quantity expectations, leading to a significant number of discoveries reported in nearly 700 peer-reviewed publications. The first four years of the 7-year primary mission duration have been mostly during solar minimum conditions with few major solar events. Starting with orbit 8 (i.e., 28 Apr. 2021), Parker flew through the magnetically dominated corona, i.e., sub-Alfvénic solar wind, which is one of the mission’s primary objectives. In this paper, we present an overview of the scientific advances made mainly during the first four years of the Parker Solar Probe mission, which go well beyond the three science objectives that are: (1) Trace the flow of energy that heats and accelerates the solar corona and solar wind; (2) Determine the structure and dynamics of the plasma and magnetic fields at the sources of the solar wind; and (3) Explore mechanisms that accelerate and transport energetic particles

    Codici sematici e variabilitĂ  psicofisiologica in soggetti con attacchi di panico

    No full text
    i soggetti con attacchi di panico presentano al livello psicofisiologico particolari network di attivazione del sistema vegetativo e di elaborazione corticale rispetto a stimoli emotigeni e a livello cognitivo, modalità espressive correlate all'alessitimia ed a una difficoltà di elaborazione ed espressione dei contenuti emotivi. obiettivo dello studio è stato quello di analizzare parte dei network vegetativi e corticali durante la rievocazione e narrazione di un evento di routine (ER)e di un evento rappresentativo dell'emozione paura (EP) in soggetti con DAP e di analizzare i codici semantici correlati alle narrazioni stesse. si sono analizzati i seguenti indici: GSR K (tonico) e GSR F (fasico) e HRV (frequenza cardiaca). rispetto agli indici cognitivi si è analizzato la durata del tempo di narrazione (TN) ei i lemmi associati alle descrizioni degli eventi negativi e positivi. Risultati: i soggetti cin DAP presentano un range inferiore di variabilità per il GSR K nelle condizioni ER e EP; risulta invece tendente alla significatività la HRV nella condizione ER. Il TN è minore (significativamente) nella condizione EP . si potrebbe attribuire il minor tempo di narrazione per EP a una componente cognitiva di evitamento della narrazione con una valenza emozionale. Rispetto ai codici semantici il gruppo DAP non ha utilizzato lemmi emotigeni nel compito di rievocazione e descrizione di un evento rappresentativo dell'EP

    Environmental distribution of Cryptococcus neoformans and C. Gattii around the Mediterranean basin

    No full text
    PubMedID: 27188887In order to elucidate the distribution of Cryptococcus neoformans and C. gattii in the Mediterranean basin, an extensive environmental survey was carried out during 2012-2015. A total of 302 sites located in 12 countries were sampled, 6436 samples from 3765 trees were collected and 5% of trees were found to be colonized by cryptococcal yeasts. Cryptococcus neoformans was isolated from 177 trees and C. gattii from 13. Cryptococcus neoformans colonized 27% of Ceratonia, 10% of Olea, Platanus and Prunus trees and a lower percentage of other tree genera. The 13 C. gattii isolates were collected from five Eucalyptus, four Ceratonia, two Pinus and two Olea trees. Cryptococcus neoformans was distributed all around the Mediterranean basin, whereas C. gattii was isolated in Greece, Southern Italy and Spain, in agreement with previous findings from both clinical and environmental sources. Among C. neoformans isolates, VNI was the prevalent molecular type but VNII, VNIV and VNIII hybrid strains were also isolated. With the exception of a single VGIV isolate, all C. gattii isolates were VGI. The results confirmed the presence of both Cryptococcus species in the Mediterranean environment, and showed that both carob and olive trees represent an important niche for these yeasts. © FEMS 2016
    • …
    corecore