38 research outputs found

    Guidelines for Reporting and Archiving 210Pb Sediment Chronologies to Improve Fidelity and Extend Data Lifecycle

    Get PDF
    Radiometric dating methods are essential for developing geochronologies to study Late Quaternary environmental change and 210Pb dating is commonly used to produce age-depth models from recent (within 150 years) sediments and other geoarchives. The past two centuries are marked by rapid environmental socio-ecological changes frequently attributed to anthropogenic land-use activities, modified biogeochemical cycles, and climate change. Consequently, historical reconstructions over this recent time interval have high societal value because analyses of these datasets provide understanding of the consequences of environmental modifications, critical ecosystem thresholds, and to define desirable ranges of variation for management, restoration, and conservation. For this information to be used more broadly, for example to support land management decisions or to contribute data to regional analyses of ecosystem change, authors must report all of the useful age-depth model information. However, at present there are no guidelines for researchers on what information should be reported to ensure 210Pb data are fully disclosed, reproducible, and reusable; leading to a plethora of reporting styles, including inadequate reporting that reduces potential reusability and shortening the data lifecycle. For example, 64% of the publications in a literature review of 210Pb dated geoarchives did not include any presentation of age uncertainty estimates in modeled calendar ages used in age-depth models. Insufficient reporting of methods and results used in 210Pb dating geoarchives severely hampers reproducibility and data reusability, especially in analyses that make use of databased palaeoenvironmental data. Reproducibility of data is fundamental to further analyses of the number of palaeoenvironmental data and the spatial coverage of published geoarchives sites. We suggest, and justify, a set of minimum reporting guidelines for metadata and data reporting for 210Pb dates, including an IEDA (Interdisciplinary Earth Data Alliance), LiPD (Linked Paleo Data) and generic format data presentation templates, to contribute to improvements in data archiving standards and to facilitate the data requirements of researchers analyzing datasets of several palaeoenvironmental study sites. We analyse practices of methods, results and first order interpretation of 210Pb data and make recommendations to authors on effective data reporting and archiving to maximize the value of datasets. We provide empirical evidence from publications and practitioners to support our suggested reporting guidelines. These guidelines increase the scientific value of 210Pb by expanding its relevance in the data lifecycle. Improving quality and fidelity of environmental datasets broadens interdisciplinary use, lengthens the potential lifecycle of data products, and achieves requirements applicable for evidenced-based policy support

    Alternatives to antibiotics-a pipeline portfolio review

    Get PDF
    Antibiotics have saved countless lives and enabled the development of modern medicine over the past 70 years. However, it is clear that the success of antibiotics might only have been temporary and we now expect a long-term and perhaps never-ending challenge to find new therapies to combat antibiotic-resistant bacteria. A broader approach to address bacterial infection is needed. In this Review, we discuss alternatives to antibiotics, which we defined as non-compound approaches (products other than classic antibacterial agents) that target bacteria or any approaches that target the host. The most advanced approaches are antibodies, probiotics, and vaccines in phase 2 and phase 3 trials. This first wave of alternatives to antibiotics will probably best serve as adjunctive or preventive therapies, which suggests that conventional antibiotics are still needed. Funding of more than £1·5 billion is needed over 10 years to test and develop these alternatives to antibiotics. Investment needs to be partnered with translational expertise and targeted to support the validation of these approaches in phase 2 trials, which would be a catalyst for active engagement and investment by the pharmaceutical and biotechnology industry. Only a sustained, concerted, and coordinated international effort will provide the solutions needed for the future.</p

    Comparing Radiation Shielding Potential of Liquid Propellants to Water for Application in Space

    Get PDF
    The radiation environment in space is a threat that engineers and astronauts need to mitigate as exploration into the solar system expands. Passive shielding involves placing as much material between critical components and the radiation environment as possible. However, with mass and size budgets, it is important to select efficient materials to provide shielding. Currently, NASA and other space agencies plan on using water as a shield against radiation since it is already necessary for human missions. Water has been tested thoroughly and has been proven to be effective. Liquid propellants are needed for every mission and also share similar characteristics to water such as their density and hydrogenous composition. This thesis explores the shielding potentials of various liquid propellants as they compare to water for the purpose of providing an additional parameter when choosing propellants for any given mission. Testing propellants is done by first creating an experimental setup involving radioisotope sources Cs-137 and Co-60, a column of liquid with variable depths, and a Geiger-Mueller tube. Water and three other liquids: acetone, 70% isopropyl alcohol, and 12% hydrogen peroxide are physically tested and their linear attenuation coefficients are calculated. Then, the test setup is replicated in CERN’s Monte Carlo base radiation transport code, FLUKA. Although the calculated linear attenuation outputs from FLUKA are discrepant from experimental results by an average of 34%, they produce the same trends. FLUKA is used to expand upon experimental results by simulating a multitude of liquid propellants and comparing them all to water. FLUKA has the ability to simulate all propellants including hydrogen, oxygen, hydrazine, and dinitrogen tetroxide. Most of the tested propellants are found to have similar, to within 35%, gamma radiation linear attenuation coefficients as compared to water. The gamma radiation in this thesis’s experiment and simulations comes from Cs-137 and Co-60 radioisotope sources. For gamma radiation from the Co-60 source, liquid hydrogen provides 90% less attenuation than water and nitric acid and AF-M315E provide 35% and 38% more attenuation than water respectively. For gamma radiation emitted by Cs-137, liquid hydrogen, isopropyl alcohol, and methane have 90%, 35%, and 29% less attenuation than water respectively. Dinitrogen tetroxide, hydrogen peroxide, AF-M315E, and nitric acid have 34%, 41%, 46%, and 52% greater attenuation coefficients than water respectively. The liquids that are similar to water for the Cs-137 source have linear attenuation coefficients within 20% of water’s. Ultimately, most of the tested liquid propellants are shown to shield against radiation at a similar rate to water. Thus, an additional parameter for choosing liquid propellants on any given mission should be their radiation shielding capabilities
    corecore