15 research outputs found

    The genetic landscape of immune-competent and HIV lymphoma

    Get PDF
    This journal supplement is Proceedings of the 13th International Conference on Malignancies in AIDS and Other Acquired Immunodeficiencies (ICMAOI)Open Access JournalBurkitt lymphoma (BL) and diffuse large B cell lymphoma (DLBCL) are aggressive forms of lymphoma in adults and demonstrate overlapping morphology, immunophenotype and clinical behavior. The risk of developing these tumors increases ten to hundred-fold in the setting of HIV infection. The genetic causes and the role of specific mutations, especially in the setting of HIV, are largely unknown. The decoding of the human genome and the advent of high-throughput sequencing have provided rich opportunities for the comprehensive identification of the genetic causes of cancer. In order to comprehensively identify genes that are recurrently mutated in immune-competent DLBCL and BL, we obtained a total of 92 cases of DLBCLs and 40 cases of BL. These cases were compared to a set of 5 DLBCLs and BL tumors derived from patients with HIV. The DLBCL cases were divided into a discovery set (N=34) and …link_to_OA_fulltextThe 13th International Conference on Malignancies in AIDS and Other Acquired Immunodeficiencies (ICAMAOI), Bethesda, MD., 7-8 November 2011. In Infectious Agents and Cancer, 2011, v. 7 suppl. 1, article no. O

    The Genetic Basis of Hepatosplenic T-cell Lymphoma

    Get PDF
    Hepatosplenic T cell lymphoma (HSTL) is a rare and lethal lymphoma; the genetic drivers of this disease are unknown. Through whole exome sequencing of 68 HSTLs, we define recurrently mutated driver genes and copy number alterations in the disease. Chromatin modifying genes including SETD2, INO80 and ARID1B were commonly mutated in HSTL, affecting 62% of cases. HSTLs manifest frequent mutations in STAT5B (31%), STAT3 (9%), and PIK3CD (9%) for which there currently exist potential targeted therapies. In addition, we noted less frequent events in EZH2, KRAS and TP53. SETD2 was the most frequently silenced gene in HSTL. We experimentally demonstrated that SETD2 acts as a tumor suppressor gene. In addition, we found that mutations in STAT5B and PIK3CD activate critical signaling pathways important to cell survival in HSTL. Our work thus defines the genetic landscape of HSTL and implicates novel gene mutations linked to HSTL pathogenesis and potential treatment targets

    Enteropathy-associated T cell lymphoma subtypes are characterized by loss of function of SETD2

    Get PDF
    Enteropathy-associated T cell lymphoma (EATL) is a lethal, and the most common, neoplastic complication of celiac disease. Here, we defined the genetic landscape of EATL through whole-exome sequencing of 69 EATL tumors. SETD2 was the most frequently silenced gene in EATL (32% of cases). The JAK-STAT pathway was the most frequently mutated pathway, with frequent mutations in STAT5B as well as JAK1 , JAK3 , STAT3 , and SOCS1 . We also identified mutations in KRAS , TP53 , and TERT . Type I EATL and type II EATL (monomorphic epitheliotropic intestinal T cell lymphoma) had highly overlapping genetic alterations indicating shared mechanisms underlying their pathogenesis. We modeled the effects of SETD2 loss in vivo by developing a T cell–specific knockout mouse. These mice manifested an expansion of γδ T cells, indicating novel roles for SETD2 in T cell development and lymphomagenesis. Our data render the most comprehensive genetic portrait yet of this uncommon but lethal disease and may inform future classification schemes

    The genetic landscape of mutations in Burkitt lymphoma

    Get PDF
    Burkitt lymphoma is characterized by deregulation of MYC, but the contribution of other genetic mutations to the disease is largely unknown. Here, we describe the first completely sequenced genome from a Burkitt lymphoma tumor and germline DNA from the same affected individual. We further sequenced the exomes of 59 Burkitt lymphoma tumors and compared them to sequenced exomes from 94 diffuse large B-cell lymphoma (DLBCL) tumors. We identified 70 genes that were recurrently mutated in Burkitt lymphomas, including ID3, GNA13, RET, PIK3R1 and the SWI/SNF genes ARID1A and SMARCA4. Our data implicate a number of genes in cancer for the first time, including CCT6B, SALL3, FTCD and PC. ID3 mutations occurred in 34% of Burkitt lymphomas and not in DLBCLs. We show experimentally that ID3 mutations promote cell cycle progression and proliferation. Our work thus elucidates commonly occurring gene-coding mutations in Burkitt lymphoma and implicates ID3 as a new tumor suppressor gene

    Deep sequencing of the small RNA transcriptome of normal and malignant human B cells identifies hundreds of novel microRNAs

    No full text
    A role for microRNA (miRNA) has been recognized in nearly every biologic system examined thus far. A complete delineation of their role must be preceded by the identification of all miRNAs present in any system. We elucidated the complete small RNA transcriptome of normal and malignant B cells through deep sequencing of 31 normal and malignant human B-cell samples that comprise the spectrum of B-cell differentiation and common malignant phenotypes. We identified the expression of 333 known miRNAs, which is more than twice the number previously recognized in any tissue type. We further identified the expression of 286 candidate novel miRNAs in normal and malignant B cells. These miRNAs were validated at a high rate (92%) using quantitative polymerase chain reaction, and we demonstrated their application in the distinction of clinically relevant subgroups of lymphoma. We further demonstrated that a novel miRNA cluster, previously annotated as a hypothetical gene LOC100130622, contains 6 novel miRNAs that regulate the transforming growth factor-β pathway. Thus, our work suggests that more than a third of the miRNAs present in most cellular types are currently unknown and that these miRNAs may regulate important cellular functions
    corecore