380 research outputs found
Recommended from our members
Anatomical Localization, Gene Expression Profiling, and Functional Characterization of Adult Human Neck Brown Fat
Essential Role for miR-196a in Brown Adipogenesis of White Fat Progenitor Cells
Brown adipocytes can differentiate from white fat progenitor cells in mice exposed to cold or β3-adrenergic stimulation, and this process is regulated by a microRNA that regulates the expression of Hoxc8, a master regulator of brown adipogenesis
Physiological roles of macrophages
Macrophages are present in mammals from midgestation, contributing to physiologic homeostasis throughout life. Macrophages arise from yolk sac and foetal liver progenitors during embryonic development in the mouse and persist in different organs as heterogeneous, self-renewing tissue-resident populations. Bone marrow-derived blood monocytes are recruited after birth to replenish tissue-resident populations and to meet further demands during inflammation, infection and metabolic perturbations. Macrophages of mixed origin and different locations vary in replication and turnover, but are all active in mRNA and protein synthesis, fulfilling organ-specific and systemic trophic functions, in addition to host defence. In this review we emphasise selected properties and non-immune functions of tissue macrophages which contribute to physiologic homeostasis
TonEBP/NFAT5 promotes obesity and insulin resistance by epigenetic suppression of white adipose tissue beiging
Tonicity-responsive enhancer binding protein (TonEBP or NFAT5) is a regulator of cellular adaptation to hypertonicity, macrophage activation and T-cell development. Here we report that TonEBP is an epigenetic regulator of thermogenesis and obesity. In mouse subcutaneous adipocytes, TonEBP expression increases > 50-fold in response to high-fat diet (HFD) feeding. Mice with TonEBP haplo-deficiency or adipocyte-specific TonEBP deficiency are resistant to HFD-induced obesity and metabolic defects (hyperglycemia, hyperlipidemia, and hyperinsulinemia). They also display increased oxygen consumption, resistance to hypothermia, and beiging of subcutaneous fat tissues. TonEBP suppresses the promoter of beta 3-adrenoreceptor gene, a critical regulator of lipolysis and thermogenesis, in ex vivo and cultured adipocytes. This involves recruitment of DNMT1 DNA methylase and methylation of the promoter. In human subcutaneous adipocytes TonEBP expression displays a correlation with body mass index but an inverse correlation with beta 3-adrenoreceptor expression. Thus, TonEBP is an attractive therapeutic target for obesity, insulin resistance, and hyperlipidemia
Brown Adipose Tissue in Humans Is Activated by Elevated Plasma Catecholamines Levels and Is Inversely Related to Central Obesity
BACKGROUND: Recent studies have shown that adult human possess active brown adipose tissue (BAT), which might be important in controlling obesity. It is known that ß-adrenoceptor-UCP1 system regulates BAT in rodent, but its influence in adult humans remains to be shown. The present study is to determine whether BAT activity can be independently stimulated by elevated catecholamines levels in adult human, and whether it is associated with their adiposity. METHODOLOGY/PRINCIPAL FINDINGS: We studied 14 patients with pheochromocytoma and 14 normal subjects who had performed both ¹⁸F-fluorodeoxyglucose positron emission tomography/computed tomography (¹⁸F-FDG PET/CT) and plasma total metanephrine (TMN) measurements during 2007-2010. The BAT detection rate and the mean BAT activity were significantly higher in patients with elevated TMN levels (Group A: 6/8 and 6.7±2.1 SUVmean· g/ml) than patients with normal TMN concentrations (Group B: 0/6 and 0.4±0.04 SUVmean· g/ml) and normal subjects (Group C: 0/14 and 0.4±0.03 SUVmean·g/ml). BAT activities were positively correlated with TMN levels (R = 0.83, p<0.0001) and were inversely related to body mass index (R = -0.47, p = 0.010), visceral fat areas (R = -0.39, p = 0.044), visceral/total fat areas (R = -0.52, p = 0.0043) and waist circumferences (R = -0.43, p = 0.019). Robust regression revealed that TMN (R = 0.81, p<0.0001) and waist circumferences (R = -0.009, p = 0.009) were the two independent predictors of BAT activities. CONCLUSIONS/SIGNIFICANCE: Brown adipose tissue activity in adult human can be activated by elevated plasma TMN levels, such as in the case of patients with pheochromocytoma, and is negatively associated with central adiposity
Altered adipocyte differentiation and unbalanced autophagy in type 2 Familial Partial Lipodystrophy: an in vitro and in vivo study of adipose tissue browning
Type-2 Familial Partial Lipodystrophy is caused by LMNA mutations. Patients gradually lose subcutaneous fat from the
limbs, while they accumulate adipose tissue in the face and neck. Several studies have demonstrated that autophagy is
involved in the regulation of adipocyte differentiation and the maintenance of the balance between white and brown
adipose tissue. We identified deregulation of autophagy in laminopathic preadipocytes before induction of
differentiation. Moreover, in differentiating white adipocyte precursors, we observed impairment of large lipid droplet
formation, altered regulation of adipose tissue genes, and expression of the brown adipose tissue marker UCP1.
Conversely, in lipodystrophic brown adipocyte precursors induced to differentiate, we noticed activation of autophagy,
formation of enlarged lipid droplets typical of white adipocytes, and dysregulation of brown adipose tissue genes. In
agreement with these in vitro results indicating conversion of FPLD2 brown preadipocytes toward the white lineage,
adipose tissue from FPLD2 patient neck, an area of brown adipogenesis, showed a white phenotype reminiscent of its
brown origin. Moreover, in vivo morpho-functional evaluation of fat depots in the neck area of three FPLD2 patients by
PET/CT analysis with cold stimulation showed the absence of brown adipose tissue activity. These findings highlight a
new pathogenetic mechanism leading to improper fat distribution in lamin A-linked lipodystrophies and show that
both impaired white adipocyte turnover and failure of adipose tissue browning contribute to disease.We thank FPLD2 patients for donating biological samples. We thank the Italian
Network for Laminopathies and the European Consortium of Lipodystrophies
(ECLip) for support and helpful discussion. We thank Aurelio Valmori for the
technical support. The studies were supported by Rizzoli Orthopedic Institute
“5 per mille” 2014 project to MC, AIProSaB project 2016 and Fondazione Del
Monte di Bologna e Ravenna grant 2015–2016 “New pharmacological
approaches in bone laminopathies based on the use of antibodies neutralizing
TGF beta 2” to GL. GL is also supported by PRIN MIUR project 2015FBNB5Y.S
Ursolic Acid Increases Skeletal Muscle and Brown Fat and Decreases Diet-Induced Obesity, Glucose Intolerance and Fatty Liver Disease
Skeletal muscle Akt activity stimulates muscle growth and imparts resistance to obesity, glucose intolerance and fatty liver disease. We recently found that ursolic acid increases skeletal muscle Akt activity and stimulates muscle growth in non-obese mice. Here, we tested the hypothesis that ursolic acid might increase skeletal muscle Akt activity in a mouse model of diet-induced obesity. We studied mice that consumed a high fat diet lacking or containing ursolic acid. In skeletal muscle, ursolic acid increased Akt activity, as well as downstream mRNAs that promote glucose utilization (hexokinase-II), blood vessel recruitment (Vegfa) and autocrine/paracrine IGF-I signaling (Igf1). As a result, ursolic acid increased skeletal muscle mass, fast and slow muscle fiber size, grip strength and exercise capacity. Interestingly, ursolic acid also increased brown fat, a tissue that shares developmental origins with skeletal muscle. Consistent with increased skeletal muscle and brown fat, ursolic acid increased energy expenditure, leading to reduced obesity, improved glucose tolerance and decreased hepatic steatosis. These data support a model in which ursolic acid reduces obesity, glucose intolerance and fatty liver disease by increasing skeletal muscle and brown fat, and suggest ursolic acid as a potential therapeutic approach for obesity and obesity-related illness
ADRA1A-Gα<sub>q</sub> signalling potentiates adipocyte thermogenesis through CKB and TNAP
Noradrenaline (NA) regulates cold-stimulated adipocyte thermogenesis(1). Aside from cAMP signalling downstream of β-adrenergic receptor activation, how NA promotes thermogenic output is still not fully understood. Here, we show that coordinated α(1)-adrenergic receptor (AR) and β(3)-AR signalling induces the expression of thermogenic genes of the futile creatine cycle(2,3), and that early B cell factors, oestrogen-related receptors and PGC1α are required for this response in vivo. NA triggers physical and functional coupling between the α(1)-AR subtype (ADRA1A) and Gα(q) to promote adipocyte thermogenesis in a manner that is dependent on the effector proteins of the futile creatine cycle, creatine kinase B and tissue-non-specific alkaline phosphatase. Combined Gα(q) and Gα(s) signalling selectively in adipocytes promotes a continual rise in whole-body energy expenditure, and creatine kinase B is required for this effect. Thus, the ADRA1A–Gα(q)–futile creatine cycle axis is a key regulator of facultative and adaptive thermogenesis
- …