80 research outputs found

    A method for translational rat ex vivo lung perfusion experimentation

    Get PDF
    The application of ex vivo lung perfusion (EVLP) has significantly increased the successful clinical use of marginal donor lungs. While large animal EVLP models exist to test new strategies to improve organ repair, there is currently no rat EVLP model capable of maintaining long-term lung viability. Here, we describe a new rat EVLP model that addresses this need, while enabling the study of lung injury due to cold ischemic time (CIT). The technique involves perfusing and ventilating male Lewis rat donor lungs for 4 h before transplanting the left lung into a recipient rat and then evaluating lung function 2 h after reperfusion. To test injury within this model, lungs were divided into groups and exposed to different CITs (i.e., 20 min, 6 h, 12 h, 18 h and 24 h). Experiments involving the 24-h-CIT group were prematurely terminated due to the development of severe edema. For the other groups, no differences in the ratio of arterial oxygen partial pressure to fractional inspired oxygen (PaO₂/FIO₂) were observed during EVLP; however, lung compliance decreased over time in the 18-h group (P = 0.012) and the PaO₂/FIO₂ of the blood from the left pulmonary vein 2 h after transplantation was lower compared with 20-min-CIT group (P = 0.0062). This new model maintained stable lung function during 4-h EVLP and after transplantation when exposed to up to 12 h of CIT

    Equilibrium ex vivo calibration of homogenized tissue for in vivo SPME quantitation of doxorubicin in lung tissue

    Get PDF
    The final publication is available at Elsevier via https://dx.doi.org/10.1016/j.talanta.2018.02.049 © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/The fast and sensitive determination of concentrations of anticancer drugs in specific organs can improve the efficacy of chemotherapy and minimize its adverse effects. In this paper, ex vivo solid-phase microextraction (SPME) coupled to LC-MS/MS as a method for rapidly quantitating doxorubicin (DOX) in lung tissue was optimized. Furthermore, the theoretical and practical challenges related to the real-time monitoring of DOX levels in the lung tissue of a living organism (in vivo SPME) are presented. In addition, several parameters for ex vivo/in vivo SPME studies, such as extraction efficiency of autoclaved fibers, intact/homogenized tissue differences, critical tissue amount, and the absence of an internal standard are thoroughly examined. To both accurately quantify DOX in solid tissue and minimize the error related to the lack of an internal standard, a calibration method at equilibrium conditions was chosen. In optimized ex vivo SPME conditions, the targeted compound was extracted by directly introducing a 15 mm (45 µm thickness) mixed-mode fiber into 15 g of homogenized tissue for 20 min, followed by a desorption step in an optimal solvent mixture. The detection limit for DOX was 2.5 µg g−1 of tissue. The optimized ex vivo SPME method was successfully applied for the analysis of DOX in real pig lung biopsies, providing an averaged accuracy and precision of 103.2% and 12.3%, respectively. Additionally, a comparison between SPME and solid-liquid extraction revealed good agreement. The results presented herein demonstrate that the developed SPME method radically simplifies the sample preparation step and eliminates the need for tissue biopsies. These results suggest that SPME can accurately quantify DOX in different tissue compartments and can be potentially useful for monitoring and adjusting drug dosages during chemotherapy in order to achieve effective and safe concentrations of doxorubicin.Natural Sciences and Engineering Research Council (NSERC) of CanadaCanadian Institutes of Health Research (CIHR) [grant 355935]SK CIHR (grant 190953)GL2 (grant GL2-01-019

    Pentraxin 3 deficiency enhances features of chronic rejection in a mouse orthotopic lung transplantation model

    Get PDF
    Chronic lung allograft dysfunction (CLAD) is a serious complication after lung transplantation and thought to represent chronic rejection. Increased expression of Pentraxin 3 (PTX3), an acute phase protein, was associated with worse outcome in lung transplant patients. To determine the role of recipient PTX3 in development of chronic rejection, we used a minor alloantigen-mismatched murine orthotopic single lung transplant model. Male C57BL/10 mice were used as donors. Male PTX3 knockout (KO) mice and their wild type (WT) littermates on 129/SvEv/C57BL6/J background were used as recipients. In KO recipients, 7/13 grafted lungs were consolidated without volume recovery on CT scan, while only 2/9 WT mice showed similar graft consolidation. For grafts where lung volume could be reliably analyzed by CT scan, the lung volume recovery was significantly reduced in KO mice compared to WT. Interstitial inflammation, parenchymal fibrosis and bronchiolitis obliterans scores were significantly higher in KO mice. Presence of myofibroblasts and lymphoid aggregation was significantly enhanced in the grafts of PTX3 KO recipients. Recipient PTX3 deficiency enhanced chronic rejection-like lesions by promoting a fibrotic process in the airways and lung parenchyma. The underlying mechanisms and potential protective role of exogenous PTX3 as a therapy should be further explored

    Anti-Human Tissue Factor Antibody Ameliorated Intestinal Ischemia Reperfusion-Induced Acute Lung Injury in Human Tissue Factor Knock-In Mice

    Get PDF
    BACKGROUND: Interaction between the coagulation and inflammation systems plays an important role in the development of acute respiratory distress syndrome (ARDS). Anti-coagulation is an attractive option for ARDS treatment, and this has promoted development of new antibodies. However, preclinical trials for these antibodies are often limited by the high cost and availability of non-human primates. In the present study, we developed a novel alternative method to test the role of a humanized anti-tissue factor mAb in acute lung injury with transgenic mice. METHODOLOGY/PRINCIPAL FINDINGS: Human tissue factor knock-in (hTF-KI) transgenic mice and a novel humanized anti-human tissue factor mAb (anti-hTF mAb, CNTO859) were developed. The hTF-KI mice showed a normal and functional expression of hTF. The anti-hTF mAb specifically blocked the pro-coagulation activity of brain extracts from the hTF-KI mice and human, but not from wild type mice. An extrapulmonary ARDS model was used by intestinal ischemia-reperfusion. Significant lung tissue damage in hTF-KI mice was observed after 2 h reperfusion. Administration of CNTO859 (5 mg/kg, i.v.) attenuated the severity of lung tissue injury, decreased the total cell counts and protein concentration in bronchoalveolar lavage fluid, and reduced Evans blue leakage. In addition, the treatment significantly reduced alveolar fibrin deposition, and decreased tissue factor and plasminogen activator inhibitor-1 activity in the serum. This treatment also down-regulated cytokine expression and reduced cell death in the lung. CONCLUSIONS: This novel anti-hTF antibody showed beneficial effects on intestinal ischemia-reperfusion induced acute lung injury, which merits further investigation for clinical usage. In addition, the use of knock-in transgenic mice to test the efficacy of antibodies against human-specific proteins is a novel strategy for preclinical studies

    Determinants of Depressive Symptoms at 1 Year Following ICU Discharge in Survivors of $ 7 Days of Mechanical Ventilation : Results From the RECOVER Program, a Secondary Analysis of a Prospective Multicenter Cohort Study

    Get PDF
    Abstract : Background: Moderate to severe depressive symptoms occur in up to one-third of patients at 1 year following ICU discharge, negatively affecting patient outcomes. This study evaluated patient and caregiver factors associated with the development of these symptoms. Methods: This study used the Rehabilitation and Recovery in Patients after Critical Illness and Their Family Caregivers (RECOVER) Program (Phase 1) cohort of 391 patients from 10 medical/surgical university-affiliated ICUs across Canada. We determined the association between patient depressive symptoms (captured by using the Beck Depression Inventory II [BDI-II]), patient characteristics (age, sex, socioeconomic status, Charlson score, and ICU length of stay [LOS]), functional independence measure (FIM) motor subscale score, and caregiver characteristics (Caregiver Assistance Scale and Center for Epidemiologic Studies-Depression Scale) by using linear mixed models at time points 3, 6, and 12 months. Results: BDI-II data were available for 246 patients. Median age at ICU admission was 56 years (interquartile range, 45-65 years), 143 (58%) were male, and median ICU LOS was 19 days (interquartile range, 13-32 days). During the 12-month follow-up, 67 of 246 (27.2%) patients had a BDI-II score ≥ 20, indicating moderate to severe depressive symptoms. Mixed models showed worse depressive symptoms in patients with lower FIM motor subscale scores (1.1 BDI-II points per 10 FIM points), lower income status (by 3.7 BDI-II points; P = .007), and incomplete secondary education (by 3.8 BDI-II points; P = .009); a curvilinear relation with age (P = .001) was also reported, with highest BDI-II at ages 45 to 50 years. No associations were found between patient BDI-II and comorbidities (P = .92), sex (P = .25), ICU LOS (P = .51), or caregiver variables (Caregiver Assistance Scale [P = .28] and Center for Epidemiologic Studies Depression Scale [P = .74]). Conclusions: Increased functional dependence, lower income, and lower education are associated with increased severity of post-ICU depressive symptoms, whereas age has a curvilinear relation with symptom severity. Knowledge of risk factors may inform surveillance and targeted mental health follow-up. Early mobilization and rehabilitation aiming to improve function may serve to modify mood disorders
    corecore